> LIEGE université
Sciences

|Faculté des Sciences|

MATHEMATIQUES GENERALES II, F. Bastin
< MATHO0009-6 >

EXERCICES DE BASE

Bachelier en Biologie et en Géographie (Bloc 2)

Année académique 2025-2026 Jacqueline CRASBORN






Introduction

Généralités

Ce fascicule fournit aux étudiants les listes d’exercices a résoudre lors des répétitions du cours de
MATHEMATIQUES GENERALES II (MATH0009-06) de 'année académique 2025-2026. II présente
aussi la résolution compléte d’exercices de base (listes 2002/2003) et les solutions des exercices des listes
2003/2004 et 2004/2005 couvrant la matiere de ce cours s’adressant aux futurs bacheliers de deuxiéme
bloc en biologie et en géographie.

Ce fascicule a été rédigé pour répondre a divers objectifs. Il veut fournir aux étudiants une référence
correcte sur laquelle s’appuyer pour tenter de résoudre les exercices proposés au cours des répétitions.

La rédaction de ce fascicule a également pour but d’insister sur le vocabulaire spécifique, les symboles
mathématiques a utiliser, la rigueur exigée dans la rédaction, les liens indispensables qui doivent figurer
entre les différentes étapes d’un développement mathématique. Trop souvent, en corrigeant des interro-
gations par exemple, on peut lire une succession de notations, d’équations, de calculs écrits les uns a coté
des autres sans la moindre indication relative & la logique du raisonnement. C’est cet écueil aussi qu’on
voudrait éviter aux étudiants grace a ce fascicule.

Une derniere intention, et non la moindre, est d’amener les étudiants & prendre en charge leur formation
de la facon la plus active et la plus autonome possible.

Pour terminer, je m’en voudrais de ne pas exprimer mes plus vifs remerciements & Frangoise Bastin pour
I'accueil qu’elle a réservé a cette initiative, les conseils qu’elle m’a donnés, sa relecture attentive et la
confiance qu’elle me témoigne dans mon travail avec les étudiants. Je remercie également tous les assis-
tants avec lesquels je travaille, tout spécialement Christine Amory, Rukiye Cavus et Safia Bennabi, pour
leurs suggestions constructives et leur participation a 1’élaboration de ce fascicule.

Jacqueline Crasborn
Année académique 2025 - 2026

Informations relatives aux répétitions

Compétences a entrainer

Lors des répétitions, avec ’aide des assistants, il est attendu que les étudiants s’entrainent aux compétences
suivantes :
1) la communication (orale et écrite)
— structurée (contexte, justifications, conclusion ... ),
— précise (vocabulaire et symboles adéquats, reflet exact de la pensée ...);

2) le sens critique ('exercice a-t-il un sens ? le résultat est-il plausible? ...);

3) le raisonnement logique et la compréhension (et non I’application d’une technique de calcul
sans réflexion, par imitation ...);
4) Vautonomie
— dans la recherche de pistes ou d’idées par 'utilisation, dans un premier temps, de documents
(syllabus du cours, fascicules intitulés “‘Bases” et “Exercices de base” ...) et, éventuellement
dans un second temps, par une demande d’aide aupres de personnes-ressources pour répondre
aux questions ou difficultés rencontrées,



— dans 'organisation et la planification de son travail ;

5) la maitrise des connaissances de base des mathématiques comme outil pour les sciences.

Consignes pour préparer une répétition

1. Répondre soigneusement aux questions de théorie de la premiere partie de chaque liste.

2. Il est vivement conseillé
— de prendre connaissance des exercices & résoudre lors de la répétition future afin de détecter
les difficultés qui pourraient étre rencontrées lors de la résolution,
— de dresser alors une liste de questions sur les difficultés rencontrées, questions a poser a
I’assistant lors de la répétition

Déroulement des répétitions

1. Dans le cas de notions qui semblent souvent poser probleme aux étudiants, ’assistant résout 1
ou 2 exercices “modele” pour leur permettre de se familiariser avec les exercices ayant trait a ces
matieres ; il fait participer les étudiants a leur résolution. Ensuite, I’assistant fera une synthese du
processus de résolution en mentionnant les éléments de théorie utilisés.

2. Enfin, chaque étudiant résout, seul ou avec son voisin, les exercices proposés dans la liste en
cherchant les informations nécessaires dans ses documents. S’il reste bloqué malgré tout, il appelle
alors D’assistant qui ’aidera dans sa recherche.

Tous les exercices de la liste doivent étre résolus si possible pour la répétition suivante; la plupart des
étudiants seront obligés d’achever a domicile. Dans ce cas, s’ils rencontrent certaines difficultés, ils peuvent
toujours en parler lors de la répétition suivante ou envoyer un courriel a I'un des assistants.

Les solutions des exercices proposés pour les répétitions se trouvent en fin de ce fascicule.

Table des matieres des répétitions pour 2025-2026

Fonctions élémentaires.

Décomposition de fractions rationnelles et approximations polynomiales.

Calcul intégral a une variable sur un ensemble borné fermé et calcul d’aires.

Calcul intégral & une variable sur un ensemble non borné fermé et nombres complexes.
Equations différentielles (1).

Equations différentielles (2) et Calcul matriciel (1).

Calcul matriciel (2).

Calcul matriciel (3).

© 0N WD

Révisions.

11 est possible que ce planning soit légerement modifié en fonction de ’avancement du
cours théorique. Toute modification sera mentionnée sur la page web du cours dont
Padresse suit

http ://www.afo.ulg.ac.be/fb/ens.html

Il est donc indispensable de la consulter régulierement.

L’équipe des assistants
Année académique 2025 - 2026

Version 17 décembre 2025



AVERTISSEMENT

Les listes d’exercices résolus présentées dans ce fascicule sont celles des années académiques
2002/2003, 2003/2004 et 2004/2005. Elles ont été modifiées en fonction de la nouvelle ver-
sion du cours de Mathématique de F. Bastin.

Les exercices des répétitions du cours Mathématiques générales 11 (MATH0009-06) pour
I'année académique 2025-2026 se trouvent au chapitre 1. Ceux des années 2002/2003,
2003,/2004 et 2004/2005 se trouvent dans les chapitres 2 et 3. Les solutions des exercices
des répétitions se trouvent au chapitre 4.

Jacqueline Crasborn
Année académique 2025 - 2026






Chapitre 1

Listes d’exercices

LISTE 1 : FONCTIONS ELEMENTAIRES

‘A préparer AVANT de venir a la répétition

‘I. Manipulation des fonctions élémentaires ‘

1. Définir les fonctions sinus et cosinus de maniére géométrique.

2. Donner la propriété faisant intervenir une somme et un produit
(a) pour 'exponentielle
(b) pour le logarithme népérien

\II. Limites des valeurs des fonctions

1. Enoncer le théoréme de la limite des fonctions de fonction.

| I11. Continuité et dérivation

1. (a) Quand dit-on qu’une fonction est dérivable en un point de son domaine de définition ?
(b) Que vaut alors sa dérivée en ce point ?

2. (a) A quelle(s) condition(s) une fonction de fonction est-elle dérivable sur un intervalle ouvert de
R?

(b) Que vaut alors sa dérivée sur cet intervalle ?
3. Donner les domaines de dérivabilité des fonctions élémentaires ainsi que leurs dérivées.
4. Donner les énoncés des théoremes de dérivation

(a) d’une combinaison linéaire de fonctions.

(b) d’un produit de 2 fonctions.

(¢) d’un quotient de 2 fonctions.

5. Quel est le lien entre la dérivée d’une fonction (resp. sa dérivée seconde) et sa croissance (resp. sa
concavité) ?

‘IV. Théoréme de I’Hospital

1. (a) Quelles sont les hypotheses & vérifier pour l'application du théoréeme de I'Hospital 7

(b) Si ces hypotheses sont vérifiées, quelle est la these du théoreme de 'Hospital ?

1



2 CHAPITRE 1. LISTES D’EXERCICES 2025-2026 MATH1009

ATTENTION : lors de 'application du théoréme de I’Hospital,

D
lim @) =T n’entraine pas que lim =< =
a—a Dg() v—a g(z)

Exercices

Lors de la répétition, les exercices I. ex 1 (fo — f5 ), ex 2 (f1 — f1), IL. ex 1 (b-c-d), III. ex
1 (c), ex 2 (e-g-h), IV. ex 1 (f5) et V. ex 1 (2-5-9-12) seront résolus par ’assistant

‘I. Eléments de base relatifs aux fonctions‘

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous. Si la fonction
est composée, mentionner de quelles fonctions élémentaires elle est la composée

A) = gy ) = =204, o) =[5 ) = Y=

fs(z) =In(e® —1), fo(z) =In (\/1 Yot x) . fr(z) = arcsin(z? — 1)

2. Déterminer le domaine de définition des fonctions données explicitement ci-dessous et les représenter
graphiquement (uniquement en se servant des symétries et des représentations graphiques de In et
de l'exponentielle).

filz) =In(—z), falz)=—In (1) fs(x) = —In(z)|, fi(z) =In (i)

]

fs(x) = —exp(x), fo(z) =exp(z+1), fr(z)=exp(z)+1

‘II. Manipulation des fonctions élémentaires ‘

1. Simplifier les expressions suivantes au maximum

(a) In(cos(m/3))+In ((sin(47r/3)2) ,(b) tan (In(e®7/2)), (c) exp(31n(2e)), (d) arcsin (—?)

(e) arcsin (sin (‘?)) () arctan (f) (9) tam (arctan (%)), (h) arctan (tan (47”»

‘III. Limites des valeurs des fonctions ‘

1. Se rappeler les limites relatives aux fonctions élémentaires et en déduire rapidement les quelques
limites suivantes

. 1 ) 1 . 1
(a) ili% exp <x> , (b wgr_noc Tn(@?)’ (¢) wll)nanr arctan <“> .
2. Calculer (si possible) les limites suivantes, sans appliquer le théoréme de l’Hospital

V1426

cotan(z) . tan(x) .ox?—1
d —_— 1 _—
(@) o0+ sin(3z) “ 250 sin(2z) () o1 |1 — x|

25T ) fim (n(Bz4+2)—In(32)) () lim In(|— o + 7))

m —-s—F-
z——o0 243 x—+00 T—+00

(9)



‘IV. Continuité et dérivation

1. On donne des fonctions par les expressions explicites suivantes. En déterminer le domaine de
définition, de continuité, de dérivabilité et en calculer la dérivée premiére.

h@) = BT fola) = ﬁ Fol) = m Fa(x) = arctan(cos(x))
f5(z) = Vsin2zx fo(x) = sin(cotan(z)) fr(x) = In(z*) fa(x) =In(2® +2 - 2)

2. On donne la fonction g dérivable sur | — 1,1[ et la fonction f : ¢t — f(t) = g(In(¢)).
(a) Déterminer le domaine de dérivabilité de f.
(b) Calculer la dérivée de f en fonction de la dérivée de g.

(c) Mémes questions si g est dérivable sur ]0,3[ et si f est la fonction y — f(y) = g(\/y? — 1).
3. Soit F' : t — F(t) = f(z(t)) avec (3) = 2, Dz(3) = 5 et (D, f)(2) = —4. En supposant F
dérivable en 3, que vaut (DF)(3)?

‘V. Théoreme de l’Hospital‘

1. Calculer les limites suivantes (dans chaque cas, si ce n’est pas possible ou si elle n’existe pas, en
donner la raison)

(1) lim cos(2z) (2) lim zln 2+l (3) lim aresin(2z)
z—0+t T+ 1 x—+o00 T z—0 T
- . In(1/z]) : 32% 41
3 5
@ xllg)lJr Va? In(¥a) (5) xEr—noo Va2 (6) xgr_noo arctan(z? + 2)
. . In(z—2) . In(a® — 32 —4)
p— 2 —
I T
. . 1+ cos(z) . tan(x) — sin(z)
N 2
(10) wll)r_{loo (In(|2 — z|) — In(z?)) (11) wh_r)r}T sn(2) (12) alclg%) 3
2
(13) lim — (14) lim ye ¥’ (15) lim —SP@)

u—+too g3 y——o0 z—r+oo  fexp(x?)



4 CHAPITRE 1. LISTES D’EXERCICES 2025-2026 MATH1009

LISTE 2 : DECOMPOSITION DE FRACTIONS RATIONNELLES
ET APPROXIMATIONS POLYNOMIALES

A préparer AVANT de venir a la répétition

‘I. Décomposition en fractions simples‘

1. Définir
(a) fraction rationnelle
(b) fraction rationnelle propre
(c) fraction rationnelle simple

2. Quel est le processus a suivre pour décomposer une fraction rationnelle en une somme de fractions
simples 7

‘II. Approximations polynomiales

1. Qu’appelle-t-on approximation polynomiale d’une fonction en un point de son domaine de définition ?
2. Quelle forme cette approximation a-t-elle quand la fonction est suffisamment dérivable ?
3. (a) Enoncer le résultat appelé « Développement limité de Taylor .

(b) Relier ce résultat aux notions d’approximation polynomiale et de reste de ’approximation
polynomiale d’une fonction en un point.

Exercices

Lors de la répétition, les exercices I. ex 1 (f-g) ainsi que II. ex 1 (f2) et ex 2 seront résolus
par D’assistant.

I. Décomposition en fractions simples‘

1. Décomposer les fractions rationnelles suivantes en fractions rationnelles simples a coefficients réels.

1 T 2 241
) — o
(a) 2?2 —dz +4’ ()—x2+2m+3’ (<) z(x? — 4z +4), ()3x+1
x? -2 x3 T
© S, (N s (9) s

‘II. Approximations polynomiales ‘

1. Dans chacun des cas suivants, déterminer I’approximation polynomiale & ’ordre n en xy pour la
fonction fi. Représenter fy (—-ou f3 ou fs— ) et ses approximations. Pour fs,
a) donner une expression explicite du reste de ces approximations.
b) indiquer ou se situe le graphique de f5 au voisinage de 0 par rapport a celui de chacune des
approximations en tenant compte du point précédent.

fi(x) = cos(x) €3*, 29 =0,n=0,1,2,3 fo(x) =149z, 20 =0,n=0,1,2
fa(x)=1/(1-2z), 20 =0,n=0,1,2 fa(x) = arctan(z), xo =0 (resp. g = 1),n =0,1,2
fs(z) = cos?(x), w9 =0, n=0,1,2 fe(x) =sin(x), o =1,n=0,1,2

2. Déterminer I’approximation polynomiale a l'ordre 3 en 0 de la fonction cos et en estimer le reste.
Représenter la fonction et cette approximation dans le méme repére orthonormé.



3. La force de marée agissant sur une masse m peut étre définie comme la différence entre l'attraction
de la Lune sur cette masse située a la surface de la Terre et I'attraction de la Lune sur cette masse
en supposant qu’elle est au centre de la Terre. Si on désigne par R le rayon terrestre, d la distance !
Terre-Lune, G la constante de gravité, M la masse de la Lune, on peut alors écrire

GMm GMm

F=l-rr @

en un point de la surface terrestre situé sur la droite joignant le centre de la Terre et le centre
de la Lune. En tenant compte du fait que le rapport R/d est petit, une expression approximative
(simplifiée) de la force F' est donnée par

2GMmR

Approx __
F ===

Expliquer pourquoi une approximation de F' est donnée par I’expression précédente.

1. entre les centres respectifs



6 CHAPITRE 1. LISTES D’EXERCICES 2025-2026 MATH1009

LiSTE 3 : CALCUL INTEGRAL A UNE VARIABLE
SUR UN ENSEMBLE BORNE FERME ET CALCUL D’AIRES

A préparer AVANT de venir a la répétition

I. Calcul d’intégrales sur un ensemble borné fermé‘

1. Donner une condition suffisante pour qu’une fonction soit intégrable sur un intervalle borné fermé
de R.

2. Comment les primitives permettent-elles de calculer une intégrale 7
3. Citer ’énoncé du théoreme d’intégration par variation de primitive
‘II. Calcul d’aires

Quelle est Vinterprétation graphique de l'intégrale d’une fonction continue & valeurs positives (resp.
négatives) sur un intervalle borné fermé de R ?

Exercices

Lors de la répétition, les exercices de calcul intégral I. ex 2 (3-7-9), II. ex 1 et ex 2 seront
résolus par ’assistant.

‘I. Calcul d’intégrales sur un ensemble borné fermé‘

1. Soit @ > 0. Démontrer et interpréter graphiquement que

a a
(a) si f est une fonction continue et paire sur [—a, a], alors f@)dx = 2/ f(x)dx
—a 0

a
(b) si f est une fonction continue et impaire sur [—a, al, alors flz)dz =0
—a

2. Calculer les intégrales suivantes (si c’est possible)

(1) /1 (2% + 2z) dw (2) /1 ze® dx (3) /O ze ™™ dx

2 -1 -1

4) /1; m dx (5) /;:3 sin?(x) da (6) /7:;:3 cotan®(z) dx

(7 /O psin?(@)dz (8) /0 " o) sin?(a) . (9) / fatl

1 x+2
2\/3 1

1 V3
(10) ﬁlarctan(x) de (1) [2 o e (12)/0 ﬁdw

3. En cartographie, sur une carte de Mercator, ’'ordonnée d’un point proche de I’équateur et dont la
latitude est ¢ € [0, 7|, est donnée par

vo) =R [ s

o= (5 7))

Montrer que



‘ II. Calcul d’aires ‘

1. Calculer laire de la partie du plan dont une description analytique est la suivante

{(m,y) z€ B‘rﬂ .y €Ret cos(z) <y < sin(2x)}.

Donner aussi une représentation graphique de cet ensemble.
2. Calculer ’aire de la partie du plan dont une description analytique est la suivante
{(z,y) 2 €[-2,1], yez—1,1 f:c2]} .

Donner aussi une représentation graphique de cet ensemble.

3. On considere I'ensemble {(z,y) € R? : x < y < 27, y > 2?}. Donner une représentation graphique
de cet ensemble en le hachurant et calculer l'aire de cette région du plan.



8 CHAPITRE 1. LISTES D’EXERCICES 2025-2026 MATH1009

LISTE 4 : CALCUL INTEGRAL A UNE VARIABLE SUR UN
ENSEMBLE NON BORNE FERME ET NOMBRES COMPLEXES

A préparer AVANT de venir a la répétition

‘I. Calcul d’intégrales sur un ensemble non borné fermé‘

1. Soit f une fonction continue sur 'intervalle [a,b] de R, a,b € R ( ou b = 400).

(a) Donner la définition de l'intégrabilité de f sur [a, b|.

(b) Que devient-elle si f est & valeurs positives (resp. négatives) sur [a, b[?

(c¢) Donner la définition de I'intégrale de f sur [a,b[ si f y est intégrable.
2. Soit s € R. Quand la fontion f définie par f(x) = x® est-elle intégrable sur |0, 1] (resp. sur [1, +o00[) ?
3. Quelles sont les principales techniques d’intégration ?

‘II. Les nombres complexes‘

1. Définir un nombre complexe puis en donner sa notation pratique.
2. Définir les parties réelle et imaginaire, le conjugué et le module d’un nombre complexe.

3. Dans le plan complexe,
(a) quelle est linterprétation graphique du module d’un nombre complexe ?
(b) que dire de la représentation d’'un nombre complexe et de son conjugué ?

4. Que peut-on dire des puissances naturelles de 7
5. Si z est un nombre complexe non nul, comment rendre réel le dénominateur de 1/z?
6. Si z=a+1ib (a,b € R), en donner la forme trigonométrique.

Quel lien peut-on faire avec les coordonnées polaires ?

7. Quelles différences y a-t-il entre la résolution et les solutions d’une équation du second degré dans
R et dans C?

Exercices

Lors de la répétition, les exercices I. ex 1 (2-7-9) ainsi que les exercices II. ex 1 (2-4) et ex
4 (1-2) seront résolus par ’assistant

‘I. Calcul d’intégrales sur un ensemble non borné fermé‘

1. Calculer les intégrales suivantes (si c’est possible)

P41 0 2
(1) ; Wdz (2) [lln(m ) dx

e 0
(3) /1m1n(\m|)) dx (4) /mﬁ dx

+o0 1 +o0 1
(5) /2 o2 —1 o (6) /2 o T
N R O —
1 x2+2x+5 . oo X2+ 223 v
/3 +oo
9) / cos(2x) €* dx (10) / r e** dx
oo 0

(11) /Olln(@ do (12) /:OO LI

2 —4



I1. Les nombres complexes‘

1.

Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des complexes ci-
dessous. Représenter ces complexes dans le plan muni d’un repére orthonormé (« X = axe réel > et
< Y= axe imaginaire »)

1 i

- 1—4)2
ey L )

i+1, (—i+1)(—1-2d),
Déterminer la forme trigonométrique des complexes suivants et les représenter dans le plan muni
d’un repére orthonormé (« X = axe réel » et <« Y= axe imaginaire >)

1
—i, i+1, 5(\/§—i).

On suppose que « est un nombre réel. Déterminer les partie réelle, imaginaire, le conjugué et le
module de chacun des complexes ci-dessous. Représenter ces complexes dans le plan muni d’un
repere orthonormé (« X = axe réel » et « Y= axe imaginaire ») en supposant que « appartient
a lintervalle [7/2, 7|

1

cos(a) —7sin(a)’ (cos(1) +isin(1))(cos(a) —isin(ex)), sin(2a) — i cos(2a).

cos(a) — isin(a),

Résoudre les équations suivantes et représenter les solutions dans le plan muni d’un repere ortho-
normé (<« X = axe réel » et « Y= axe imaginaire >)

(1) 2248=0 (2)272°+1=0 (3)2*+2=iz (4)22—2+1+i=0 (5)22—(1—2i)z2=1+i
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CHAPITRE 1. LISTES D’EXERCICES 2025-2026 MATH1009

LISTE 5 : EQUATIONS DIFFERENTIELLES (1)

A préparer AVANT de venir a la répétition

I. Equations différentielles ‘

1.

® NS e W

Définir une EDLCC ? d’ordre 1.

Donner I'équation homogene associée a cette équation.

Donner 'équation caractéristique associée a cette équation homogene.
Donner I’ensemble des fonctions solutions de I’équation homogene.
De combien de constantes arbitraires les solutions dépendent-elles 7
Répondre aux mémes questions pour une EDLCC d’ordre 2.

Quelle est la forme générale de toute solution d’'une EDLCC ?

a) Qu’appelle-t-on <« méthode des exponentielles polyndémes > ?

b) Comment détermine-t-on une solution particuliere dans ce cas pour une équation d’ordre 1
(resp. d’ordre 2) ?

c¢) Si le second membre ne s’écrit pas sous la forme d’un produit d’une exponentielle par un
polynome, mais n’est, par exemple, qu'un polynéme ou un cosinus ou ... comment peut-on envisager
d’utiliser quand méme cette méthode ?

Quel est le processus a suivre pour résoudre une EDLCC?

Exercices

Lors de la répétition, les exercices suivants seront résolus par D’assistant : II. ex 2 (7-8-9)

‘ I. Quelques manipulations ‘

1.

. Montrer que la fonction v : z — Cie

Si Péquation différentielle (D;y)? = 2y admet 2 solutions distinctes non nulles, peut-on affirmer
qu’une combinaison linéaire de ces solutions est encore solution de cette équation ?

Montrer que la fonction g(t) = 3t2 — 6t + 2, t € R, vérifie le systeme

(Diy)* =12(y + 1)
y(0) =2
y(2) =2

Montrer que la fonction g(t) = cotan(t) —1/sin(t), t € 0, 7/2[, vérifie 'équation 2 Dy +y? = —1.
G2 g € R, C, et Cy étant des constantes complexes
arbitraires, vérifie I'’équation v D?v — (Dv)? = 0.

Montrer que la fonction z + tan(x) + 1/ cos(z), x € ]0,7/2[, vérifie Péquation 2D f — f? = 1.

IT. Résolution d’équations diﬂ'érentielles‘

1.

Résoudre les équations différentielles suivantes, en spécifiant dans quel intervalle on travaille

1) 4Df +2if =0 2)D%f =2f 3)D%f =0

4)D*f+Df —2f =0 5)4D%f—f=0 6) D2f+f=0

2. abréviation pour < équation différentielle linéaire & coefficients constants >
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2. Résoudre les équations différentielles suivantes, en spécifiant dans quel intervalle on travaille
(pour I’équation 3, en donner aussi les solutions réelles)

1) D*f(z) + Df(z) — 2f(z) = e® + 42%e®** +1  2) 4D?f(z) — f(z) = cos?(z) — 1/2

3) D*f(x) + f(x) = xe** 4) D*f(x) + 2D f(x) + f(x) = (2 + cos(x))e ™"
5) D*f(x) - f(z) = 1 + 2%, 6) 9D*f(x) = Df(x) =1

7) D*f(x) — 4f(z) = 1 + €7, 8) D?f(x) + 4f(x) = sin(4x)

9) Df(z) — 2f(z) = ze?®, 10) 2D f(z) + 3f(z) = 2® + 1

3. Résoudre le systéme suivant, en spécifiant dans quel intervalle on travaille

AD?f(x

Y+ fla) =22+ 2 +2
f(O) 0

4. Résoudre ’équation différentielle suivante en précisant l'intervalle sur lequel on travaille.
2D%f(x) + Df(z) = 2z

Déterminer ensuite la solution qui vaut 1 en 1 et dont la dérivée premiere vaut 0 en 1.
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LISTE 6 : EQUATIONS DIFFERENTIELLES (2) ET CALCUL
MATRICIEL (1)

A préparer AVANT de venir a la répétition

‘I. Définitions et opérations‘

1. Qu’appelle-t-on le type (ou le format) et la dimension d’une matrice ?
2. Etant donné une matrice A, définir

(a) sa matrice conjuguée,

(b) sa matrice transposée,

(¢) sa matrice adjointe.
3. Définir les opérations suivantes et en donner les propriétés :

(a) addition de deux matrices du méme type,

(b) multiplication d’une matrice par un nombre complexe,

(¢) multiplication de deux matrices.

Exercices

Lors de la répétition, les exercices I. ex 1 et II. ex 1 (2 - 7) seront résolus par ’assistant.

I. Equations différentielles : divers

1. Dans certaines conditions, la température de surface y(¢) d’un objet change au cours du temps
selon un < taux > proportionnel a la différence entre la température de I'objet et celle du milieu
ambiant, que I'on suppose constante et que 1’on note yg. On obtient ainsi I’équation différentielle

Dy(t) = k(y(t) — yo)

ou k est une constante strictement négative. Cette équation est appelée <« Newton’s law of
cooling > et elle est utilisée notamment pour déterminer le temps entre la mort d’un individu
et la découverte de son corps.

Résoudre cette équation et montrer alors que la température de 'objet se rapproche de la tempéra-
ture ambiante au fur et a mesure que le temps passe.

2. Depuis un recensement de la population d’un pays, on constate que la vitesse d’accroissement de la
population est, & tout instant, proportionnelle au nombre d’habitants & cet instant. Aprés combien
de temps depuis ce recensement cette population sera-t-elle triple sachant qu’elle a doublé en 50
ans?

3. La vitesse initiale d’une balle roulant sur un sol horizontal est de 10 m/s. Vu les frottements,
la vitesse décroit avec un taux constant de 2 m/s?. Quand la balle sera arrétée, quelle distance
aura-t-elle parcourue depuis son point de départ ?

2

4. Déterminer la valeur de la constante ¢ de telle sorte que la fonction f(z) = 322, x € R soit une

solution de I’équation différentielle
dy\> d
c (y) + Y y=20

dx dx
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5. Soit L la longueur d’un pendule et soit T' sa période d’oscillation. Si les oscillations sont petites
et si le pendule n’est soumis a aucune force autre que la gravité, alors un modele liant 7" et L est
I’équation différentielle

dT T
dL 2L’
Montrer que cela implique que la période T est proportionnelle & la racine carrée de la longueur L.

II. Opérations entre matrices

1. Soient les matrices A, B, C' données par

2 i 2 0 .
3/i (2—i)? i =2 vt

Si possible, effectuer les opérations suivantes (et simplifier la réponse au maximum). Si cela ne
I’est pas, en expliquer la raison.

1) A+ B, 2) A+ B, 3) AB, 4) AB + C, 5) BA, 6) CA, 7) A*C, 8) iC, 9) (iA)*.
2. Soit A une matrice carrée de dimension 3 telle que A;, =1, Vi, k et
100
B=]1010
0 0 0

Calculer C = AB — BA et en déduire la forme de C + C.

2 -1
A= .
4. Déterminer la forme générale des matrices qui commutent avec la matrice

(50)

3. Montrer que A2 — 24+ 3 1 =0 avec
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LISTE 7 : CALCUL MATRICIEL (2)

A préparer AVANT de venir a la répétition

‘I. Définitions et opérations‘

. Qu’appelle-t-on le déterminant d’une matrice ? Peut-on toujours le définir ?

. Citer les propriétés liées aux déterminants.

1

2

3. Qu’appelle-t-on matrice inverse d’une matrice carrée donnée 7

4. Quelle est la forme explicite de la matrice inverse lorsqu’elle existe ?
5

. Donner une condition nécessaire et suffisante pour que la matrice inverse d’une matrice carrée
donnée existe.

‘II. Valeurs propres et vecteurs propres

1. Etant donné une matrice carrée A,
(a) qu’appelle-t-on valeur propre de A ?
(b) qu’appelle-t-on vecteur propre de A ?

2. En pratique, comment détermine-t-on les valeurs propres et les vecteurs propres d’une matrice
carrée ?

3. Qu’appelle-t-on matrice diagonale ?

4. Qu’appelle-t-on matrice diagonalisable ?

Exercices

Lors de la répétition, les exercices I. ex 1 (A - C), IL. (C) et III. ex 2 (A - C) seront résolus
par P’assistant.

I. Déterminants ‘

1. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

31 6 1 3 -3

1 _. . _. 1
A:B(Q_ll T),B:<(.j1)2 522>,C: 6 2 3 |, D=5 3 -3 1
! 3 1 -6 -3 1 3

2. Le déterminant de chacune des matrices suivantes est un polynéme en x € C. Factoriser ce po-
lyndéme en un produit de facteurs du premier degré.

T 0 3
A= l-z V3 , B= ! x+,2 , C= v 4 , D=1 0 z+1 T
V3 22—z o 1 =z 1 0 £-9
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II. Inversion de matrices ‘

Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne « € R).
-1 0 -1

(0 1 (2 8 _( sin(a) cos(a) _
A‘(1 2)’ B_(1 4)’ C_<cos(a) —sin() )0 P00 b

‘III. Valeurs et vecteurs propres, diagonalisation ‘

1. Déterminer les valeurs propres des matrices suivantes et en donner la multiplicité.

P 2 1 10 1 3 0
A= < . ) , B=10 3 5 , C=|3 -2 -1
v 00 2 0 -1 1
2. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-

elles diagonalisables ? Pourquoi 7 Si elles le sont, en déterminer une forme diagonale A, ainsi qu'une
matrice inversible S qui y conduit.

5 3 10 0 -10 0
A:(41>, B=| 1 1 0|, c=1 1 1 o
2 0 -1 0 0 -1

Calculer les produits AS et SA. Comparer les matrices obtenues. N’aurait-on pas pu prévoir ce
resultat sans effectuer les calculs ? Pourquoi ?

3. Une matrice carrée A de dimension 2 possede les deux valeurs propres 1 et -1, auxquelles peuvent
étre associés respectivement les vecteurs propres

()« (4)

Que vaut A?
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LISTE 8 : CALCUL MATRICIEL (3)
A REVOIR EN FONCTION DE I’AVANCEE DU COURS

A préparer AVANT de venir a la répétition

I. Matrices de Leslie et matrices stochastiques ‘

Etant donné une matrice carrée A,

1.

qu’appelle-t-on matrice de Leslie, matrice de Leslie réguliere 7 Ne pas considérer cette question si
la matiere n’a pas été vue au cours

2. qu’appelle-t-on matrice stochastique, matrice stochastique réguliere 7

qu’appelle-t-on vecteur de probabilité 7

Exercices

Lors de la répétition, les exercices I. ex 1 et ex 2 ainsi que II. ex 1 et ex 2 seront résolus
par D’assistant.
La liste des exercices de la partie I sera peut-étre revue en fonction de I'avancée du cours

I. Matrices de Leslie et matrices stochastiques

1.

Les baleines bleues sont une espece de mammifere en voie d’extinction a cause notamment de non
respect de regles de péche. Tous les 20 ans, des chercheurs recensent leur population (une estima-
tion bien stir) et font la répartition entre le nombre de baleines femelles de moins de 20 ans (les
< jeunes ») et celui des baleines femelles de strictement plus de 20 ans (les < vieilles »). Ils ont
trouvé le moyen de marquer les deux catégories de telle sorte que ’on puisse reconnaitre les jeunes
nés d’'une mere de moins de 20 ans et ceux nés d’une mere de plus de 20 ans. Le comptage des
baleines femelles actuellement donne les résultats suivants : 1/3 des baleines femelles < jeunes > ont
donné naissance & un petit (survivant) et 5/8 des baleines < vieilles > l'ont fait. De plus, seulement
1/6 des baleines < jeunes » et seulement la moitié des baleines « vieilles > ont survécu.

On suppose que les parametres sont valables a grande échelle de temps. ..

(a) Ecrire le systeme d’équations modélisant 1’évolution des deux catégories de baleines, en spécifiant
la matrice de Leslie correspondante.

(b) Comment va évoluer la population ?

(¢) Pourquoi peut-on dire que l'espece est en voie d’extinction ?

. L’institut météorologique a fait les observations suivantes :

— on n’a jamais vu deux jours ensoleillés consécutifs,

— ¢'il fait beau un jour donné, on a une chance égale d’avoir de la pluie ou de la neige le lendemain,

— ¢'il pleut ou s’il neige, on a une chance sur deux que le temps se maintienne le jour suivant et
une chance sur quatre qu’il fasse beau le lendemain.

Sachant cela,

(a) Représenter la matrice de transition de ce systeme.

(b) Sachant qu’il fait beau aujourd’hui, quel pourcentage de chance a-t-on qu’il fasse beau dans
deux jours?

(c) A long terme, quelle sera I’évolution du climat ?
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3. Dans un laboratoire, a chaque repas, des lapins ont le choix entre manger des carottes, de la salade
ou des pissenlits mais ne peuvent manger qu'un aliment d’une seule catégorie lors d’'un méme
repas. Comme ils sont gourmands, ils ne manquent jamais un repas.

L’observation montre que si un lapin a mangé des carottes & un repas, il en mangera au repas
suivant dans 70 % des cas ; sinon, il mangera de la salade une fois sur 5 ou des pissenlits 1 fois sur
10.

S’il a mangé de la salade, il en mangera encore 6 fois sur 10 au repas suivant ; sinon, il mangera
un des deux autres aliments de fagon équiprobable.

Enfin, s’il a mangé des pissenlits, au repas suivant il y a 1 chance sur 5 qu’il mange des carottes
et 2 chances sur 5 de la salade.

(a) Siun lapin vient de manger des carottes, quelle est la probabilité qu’il mange de la salade dans
deux repas?

(b) A longue échéance, que mange ce lapin ?

4. Un individu vit dans un milieu ou il est susceptible d’attrapper une maladie par piqire d’insecte.
Il peut étre dans l'un des trois états suivants : immunisé (I), malade (M), non malade et non
immunisé (S). D’un mois & lautre, son état peut changer selon les regles suivantes :

- étant immunisé, il peut le rester avec une probabilité 0,9 ou passer a I’état S avec une proba-
bilité 0,1
- étant dans I’état S, il peut le rester avec une probabilité 0,5 ou passer a I'état M avec une
probabilité 0,1 ;
- étant malade, il peut le rester avec une probabilité 0, 2 ou passer a I’état S avec une probabilité
0,8.
Déterminer
(a) la matrice de transition du systéme;
(b) la probabilité qu’un individu immunisé soit encore immunisé apres deux mois;
(c) la probabilité qu’a long terme, un individu soit immunisé.

5. Un biologiste étudie le passage d’une molécule de phosphore dans un écosysteme. Celle-ci peut se
trouver dans le sol, dans ’herbe, dans le bétail ou peut disparaitre de 1’écosysteme. D’une heure
a lautre, le transfert peut s’effectuer selon les modalités suivantes :

- étant dans le sol, la molécule a 3 chances sur 5 d’y rester, 3 chances sur 10 de passer dans
I’herbe et 1 chance sur 10 de disparaitre ;

- étant dans l'herbe, elle a 1 chance sur 10 de revenir dans le sol, 2 chances sur 5 de rester dans
I’herbe et 1 chance sur 2 de se retrouver dans le bétail ;

- étant dans le bétail, elle a 3 chances sur 4 de retourner dans le sol, 1 chance sur 5 de rester
dans le bétail et 1 chance sur 20 de disparaitre ;

- si la molécule disparait, elle ne réapparait plus nulle part.

Déterminer la matrice de transition du systeme.

6. Depuis des mois, un laborantin de ’ile de Réve travaille sur une substance, appelée KillCovid, tres
prometteuse pour la découverte d’un médicament qui permettrait de détruire le virus responsable
de la maladie Covid. Le KillCovid n’a malheureusement qu’une durée de vie de deux mois.

Le laborantin a trouvé le moyen de se servir de ce KillCovid comme catalyseur pour en produire
du nouveau, a partir d’autres substances communes tenues secretes. Il récupere donc le KillCovid
utilisé a la fin du processus. Chaque mois, en utilisant 1 dose de KillCovid d’un mois, il produit
1/2 dose de nouveau KillCovid et la proportion est la méme avec le KillCovid de deux mois.

(a) Ecrire le systéme d’équations modélisant I’évolution du stock de KillCovid (stock 4gé d’un
mois et stock 4gé de deux mois), en spécifiant la matrice de Leslie correspondante.

(b) Comment va évoluer le stock de KillCovid ?

7. Par cycle de trois ans, un gestionnaire financier s’occupe du portefeuille d’actions d’une entreprise.
Ce portefeuille comprend des actions qui viennent d’étre achetées, d’autres qui ont été achetées
un an auparavant et enfin d’autres qui sont dans le portefeuille depuis deux ans.

Le prix de chaque action venant d’étre achetée augmente tellement qu’au début de la deuxieme
année on peut en acheter 6 nouvelles et au début de la troisieme 10 nouvelles.
En méme temps, au cours de la premiere année, il revend la moitié de ses actions pour investir
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dans D'entreprise et, au cours de la deuxiéme année, il ne conserve que 40 % des actions possédées
a ce moment et revend les autres pour la méme raison.

(a) Ecrire le systeme d’équations modélisant I’évolution de cette répartition des actions selon leur
durée de placement (un an, deux ans, trois ans) en indiquant quelle est la matrice de Leslie de
celle-ci.

(b) Comment va évoluer la composition du portefeuille ?

(¢) Quelle est la répartition idéale qui permet de doubler chaque nombre d’actions de chaque type
sur un an ?

1. En algebre linéaire (ou géométrie analytique), une rotation du plan (d’angle ) est représentée par

une matrice du type
Mo — cos(f) —sin(6)
7\ sin(@) cos(h)

ol # est un réel (et représente la mesure de 'angle de la rotation).

— Pour tout 6, déterminer la matrice produit M7 et en simplifier les éléments au maximum.

— Montrer que quels que soient 6,6’ les matrices My et My commutent. Qu’est-ce que cela
signifie en termes de rotations?

— Montrer que quel que soit le réel 6, la matrice

(ot s )

est aussi une matrice qui représente une rotation.
2. Vrai ou faux (Justifier)

(a) Toute matrice carrée de dimension 3 commute avec la matrice
100
010
0 0 0

(b) La matrice

a—b a?>—ab+b?
a? — b2 a® — b3

(¢) Si une matrice carrée A de dimension 2 est de déterminant nul, alors I'une des colonnes de A
est multiple de I'autre.

(a,b € C) est toujours inversible.

(d) Si deux lignes d’une matrice carrée A de dimension 3 sont identiques, alors det A = 0.
(e) Si A est une matrice carrée de dimension 3, alors det(5A4) = 5det(A).

(f) Si B est la matrice obtenue en multipliant la ligne 3 d’une matrice carrée A de dimension 3
par 5, alors det(B) = 5det(A).

Si X est un vecteur propre de la matrice 24 alors c’est aussi un vecteur propre de A.
Si A est une valeur propre de A alors A2 est valeur propre de A2.
0 peut étre valeur propre d’une matrice inversible.

Si A est inversible, tout vecteur propre de A est aussi vecteur propre de son inverse.

)
)
)
)
(k) Le carré d’une matrice est une matrice qui posséde au moins un élément non nul.
) Si A est diagonalisable, alors sa transposée ’est aussi.
) Si A est diagonalisable et inversible, alors I'inverse est aussi diagonalisable.
) Si A est diagonalisable, alors A% 'est aussi.

)

Les valeurs propres de l'inverse d’une matrice inversible sont les inverses des valeurs propres
de la matrice.
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(p) La somme de deux matrices diagonalisables est toujours une matrice diagonalisable.

3. La cryptographie, pour beaucoup de monde, est un moyen de maintenir des communications
privées. En effet, la protection des communications sensibles a été 1’objectif principal de la cryp-
tographie dans la grande partie de son histoire. Le chiffrage est la transformation des données
dans une forme illisible. Son but est d’assurer la sécurité en maintenant I'information cachée aux
gens a qui 'information n’est pas adressée, méme ceux qui peuvent voir les données chiffrées. Le
déchiffrage est I'inverse du chiffrage ; c’est la transformation des données chiffrées dans une forme
intelligible.

Aujourd’hui, les gouvernements emploient des méthodes sophistiquées de codage et de décodage
des messages. Un type de code, qui est extrémement difficile a déchiffrer, se sert d’une grande
matrice pour coder un message. Le récepteur du message le décode en employant 'inverse de la
matrice. Voici un exemple de codage/décodage d’un message par ce procédé.
Considérons le message

SUIS EN DANGER

(4%)=e

Pour le codage, on assigne a chaque lettre de ’alphabet un nombre, & savoir simplement sa position
dans I'alphabet, c’est-a-dire A correspond a 1, B correspond a 2, ..., Z correspond a 26. En outre,
on assigne le nombre 27 & un espace. Ainsi, le message devient :

s U 1 s * E N * D A N G E R
19 21 9 19 2r 5 14 2r 4 1 14 7 5 18.

ainsi que la matrice de codage

Puisqu’on emploie une matrice 2 x 2, on décompose la forme numérique de ce message en une suite
de vecteurs® 1 x 2 :

(19 21), (9 19), (27 5), (14 27), (4 1), (14 7), (5 18).

On code alors le message en multipliant chacun de ces vecteurs par la matrice de codage C, ce qui
peut étre fait en définissant une matrice dont les lignes sont ces vecteurs et en multipliant cette
derniere par C, ce qui nous donne :

19 21 2 25
9 19 ~10 39
27 5 L o 22 -39
14 27 ( s >= ~13 53
41 3 -5
14 7 T T
5 18 ~13 44

Des lors, le message crypté est donné par les lignes de cette derniere matrice que l'on place bout
a bout pour la transmission :

-2, 25, —10, 39, 22, -39, —13, 53, 3, =5, 7, =7, —13, 44.

Enfin, pour décoder le message, le récepteur a recours a la méme technique que celle employée
pour le codage mais en utilisant I'inverse de la matrice de codage, qui est donnée ici par

(32
o =(17)

3. Dans le cas ou il faut compléter le dernier vecteur, il suffit d’y placer des < 27 >, ce qui revient & compléter le message
par des espaces pour avoir un nombre de caractéres qui soit multiple de la dimension de la matrice de codage.

Il doit donc calculer le produit
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-2 25 19 21
—-10 39 9 19
22 -39 3 9 271 5
-13 53 ( 11 ) =\| 14 27
3 ) 4 1
7 -7 14 7
—-13 44 5 18

et il retrouve bien la matrice correspondant au message de départ, ce qui lui permet de lire le
message :

19 21 9 19 271 5 14 27 4 1 14 7 5 18
s U 1 s * E N * D A N G E R
Le Gouvernement a réussi a intercepter le message crypté suivant, provenant de I’ennemi public
n°1 et destiné a I’ennemi public n°2 :
—18, —21, —31, 53, 48, 61, 3, —15, —21, —34, —30, —43, 45, 42, 48.

L’un de ses meilleurs espions infiltrés, James Bond, a découvert que la matrice utilisée par I’ennemi
pour coder ce message est la suivante :

-3 -3 —4
0 1 1
4 3 4

Malheureusement, il n’y connait rien en calcul matriciel et personne ne peut déchiffrer ce mes-
sage... Votre mission est de décoder ce message dans les plus brefs délais.



Chapitre 2

Révisions et compléments

2.1

Exercices sur la liste 2 : les approximations polynomiales

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Dans tout ce qui suit, sauf mention du contraire, x est I’inconnue réelle.

Liste 2002/2003

1.

Déterminer I'approximation polynomiale a l'ordre n au point xg pour chacune des fonctions
données ci-dessous.

=uzsin(z),n=3,20 =0, f(x)=+vV14+z,n=2,20=0, f(z)=In(z+1),n=3,20=0
flz)=ln(z),n=2,20 =2

Estimer le reste de I'approximation polynomiale & I'ordre 2 et a 'ordre 3 en 0 de la fonction
f(z) =sin(z), = € R.

Liste 2003/2004

1.

Déterminer ’approximation polynomiale de f & I'ordre n au point xy dans chacun des cas suivants.

=4 fa(z) = tan(z), xg =m,n=4
3 falx) =v2x+1, zp=0,n=2

fs(x) =In(1 —2%), 20 =0,n =2 fo(x) = x arcos(x), o =0,n =2

Estimer le reste de 'approximation polynomiale & ’ordre 2 en 0 de la fonction cos. Représenter la
fonction et cette approximation dans le méme repere orthonormé.

Liste 2004/2005

1.

Dans chacun des cas suivants, déterminer I’approximation polynomiale a l'ordre n en xg pour la
fonction donnée explicitement.

xe % 29=0,n=0,1,2,3

fl(l.)ze—Qm’ .’130:0777,:0,1,273 fQ(x):
fa(x) =1/(14+2%), 20 =0,n=0,1,2  f4(z) = arctan(z), zo = 0,n =0,1,2,3
f5(x) =In(x), 2o =1,n=0,1,2,3 fo(x) = (1+2z)3 20=0,n=0,1,2,3,4

Représenter f3 et son approximation a ’ordre 2 en 0.

Estimer le reste de ’approximation polynomiale a I’ordre 4 en 0 de la fonction sin. Représenter la
fonction et cette approximation dans le méme repere orthonormé.

21
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3. — L’approximation a I'ordre 3 d’une fonction en un point est toujours
O un polynoéme de degré 3
O une fraction rationnelle dont le degré du numérateur est strictement inférieur a celui du
dénominateur
O un nombre réel plus petit ou égal a 3
O une fonction
O aucune des propositions précédentes n’est correcte.

2.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
— La fonction x — f(z) = zsin(z) est indéfiniment contintiment dérivable sur R et on a

Df(x) = sin(zx) + x cos(x), D?f(x) = 2cos(z) — xsin(x), D3f(x) = —3sin(z) — x cos(z)

sur R, donc
f(0)=0, Df(0)=0, D?f(0)=2, D*f(0)=0.
Deés lors, "approximation demandée est le polynéme

x? 3
Py(z) = f(0) + @ Df(0) + = D*f(0) + = D*f(0) = a*.

— La fonction z — f(x) = /1 4+ z est indéfiniment continiiment dérivable sur | — 1, +o0[ et on a

Df() = S0 +2)2, D) = (L4 2) "

sur | — 1, +o0[, donc
F0)=1, DIO)=5, DO)=-7
Des lors, 'approximation demandée est le polynome
Py(x) = f(0) +z Df(0) + %2 D2f(0) =1+ 7 — %2
— La fonction z — f(z) = In(z 4+ 1) est indéfiniment continiiment dérivable sur | — 1, 4o00[ et on a

Df(z)=(z+1)7", D’f(z) = —(x+1)7% D*f(z)=2(x+1)"°
sur | — 1, 400, donc
F(0)=0, DfO)=1, D2f(0)=—1, D*f(0)=2.
Des lors, 'approximation demandée est le polynéme

2 £C2 ,CC3

i ;53
Py(z) = £(0) + & DF(0) + 5 D*f(0) + & D*f(0) =2 — 5 + 5

— La fonction z — f(z) = In(z) est indéfiniment contintiment dérivable sur ]0, +oo[ et on a
Di) =2, D*f(x) = "

sur ]0, +ool, donc

1 1
J@)=In(2), Df@2)=5, DFR)=-7
Des lors, 'approximation demandée est le polynéme
—92 2 ] ) 2
Pya—2) = 1)+ (2~ 2) DF) + T2 D2p) = ) T2 20
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Exercice 2

La fonction x — f(x) = sin(x) étant réelle et indéfiniment contintiment dérivable sur R, vu le dévelop-
pement limité de Taylor, on sait que le reste de l’approximation polynomiale a lordre 2 est
Ro(x) = (2%/6)D? f(ug), © €R et ug strictement compris entre 0 et .
Puisque D f(z) = cos(z), D?f(z) = —sin(x) et D3 f(z) = —cos(z), on a

23 |z

Ro(x) = 5 cos(ug) et |Ra(x)] < o ¢ eR.

De méme, le reste de Papproximation a Pordre 3 est Rz(x) = (x?/24) D*f(ug) = z* sin(uo)/24, z € Ret
ug strictement compris entre 0 et x puisque D?* f(z) = sin(x). Mais comme I"approximation de la fonction
sinus & l'ordre 4 est la méme que 'approximation a ’ordre 3, en utilisant le développement de Taylor, on
obtient
25 |2l E

= < .
120 cos(ug) et | R ()] 120" © €eR

Riw) = Ru(w) = -2 D° ) =

2.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

fi:Py(z) =22 —2"/2, x €R.

fo:Piz—m)=x—m+ (z—m)3/3, x €|n/2,3n/2[.

f3:Ps(x —m/4) =1+2(x —7/4) + 2(x — w/4)% + (8/3)(x — 7 /4)3, x € | — 7/2,7/2].
fa: g(x)*ler z?/2, x €] —1/2,+00.

f5:Py(z) = -2 z€]—1,1].

fo: Po(z) = (7T/2).%' —z% xe]-1,1[

NJ

Exercice 2

Ra(z) = (23/6) sin(u) avec u strictement compris entre 0 et x; on a donc |Re(z)| < 23/6, = € R.

4Y
y = cos(z)
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2.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

Po(l‘ — xo) Pl(l‘ — .230) Pg(.if — l‘o) Pg(.’lf — l‘o) P4(JJ — l‘o)
2 2 4 3
1 - - - - 3T,
f 1 1—2z 1—2z+ 2z 1—-2z+ 2z 395 z€R
fa 0 x x — 222 r—2r2+223,r€R
fs 1 1 1—2z%2,2€R
3

fa 0 x T Jc—?,xeR

(x—1)° (@-1? | @1’
fs 0 x—1 r—1— 5 r—1— S5 4 5,7 €]0, +o0]
fe 1 14+ 3z 143z + 3z 14 3z + 322 + 23 1+3z+322+2%,2z€R

Exercice 2

Ry(x) = cos(up)z” /5! avec g strictement compris entre 0 e)t/

Approximation : Py(z) = 2 — 2%/6,z € R.

6

4

2

R4($) =

avec ug strictement compris entre 0 et .

Approximation : Py(z) = 1 — 2%/6 + 2*/120,2 € R.

X
y—l—:c2
y = sin(z)
AN
IS
Yy=x— %

(2° /5 1) (uf cos(ug)—5 ug sin(ug)—20 uj cos(ug)+60 ud sin(ug)+120 ug cos(ug)—120 sin(ug)) . ug
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L Y
2 4
\/:\ y:1_%+1m%
3 2 -1 1 2 =X
_0.51 y = sin(z)/x
_17

Exercice 3

une fonction.

2.5 Exercices sur les listes 3 et 4 : le calcul intégral a une
variable

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).
Liste 2002-2003

1. Calculer les intégrales suivantes

2 1 2
/ Vv dx / xe " dx / sin?(y) dy
1 0 0

/0 %dm /Olln(t)dt /01de

1
+ +o0 +oo
1 1
/ ——dx / 22 % dx / dx
— o 1 + x2 0 2 56'2 —1

2. Calculer 'aire de la partie du plan délimitée par les graphiques des fonctions f,g,h données

explicitement par f(z) = z2 z) =z, h(z) = 2z et donner une représentation graphique de
p p , g ) P graphiq

cette région du plan.

Liste 2003-2004

1. Pour chacun des cas suivants, déterminer si 'intégrale de f sur A existe (c’est-a-dire si [ 4 f(x) do
représente bien un nombre)

@) =sin(vE), A=[0,1]  f@) = ——, A=]— 00,0 /idx

14 a2 _q x2

1 —+o00 1
/ In(z?) dz / In(z) dx / In(z)
0 0 1 + .1:2 0 1 — JJ2

2. Calculer les intégrales suivantes (si c’est possible)

/2 1 3 2 T
/ ——dz / V1i+z dx / e dx / zcos®(z) dx
™ 1/2 0

/4 sin?(x) 1

“+o0 3 1 0 0
/ z?e™™ dx / In(z?) dx / arcsin(x) dz / x arcsin(z) dx
0 0

—1 —1

+oo 4 4 4 +oo 1 —2 1
/ In({l+—) dx / s dx / ——dzx / ——dzx
0 x? _ox+3 o 4x2+9 oo 422 —9
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. Calculer laire de la partie du plan dont une description analytique est la suivante

{(z,y) : x € 10,27, cos(z) <y < sin(x)}.

Donner aussi une représentation graphique de cet ensemble.

. La vitesse d’une voiture, partant de l'origine O et se déplacant en ligne droite suivant I’axe X

est v(t) = 10t — t2, t € [0,10]. Déterminer la position z(t) de la voiture au temps ¢ € [0,10].
Déterminer également quand 1’accélération est nulle.

2004/2005
. a) Pour chacun des cas suivants, déterminer si f est intégrable sur A.
2
1
f@) = cos(v/fal). A= [-L1]; fla) = {7—g. A=R; fla) = —. A=]0.1] et A= [L oo

b) Calculer les intégrales suivantes (si c’est possible)

/3 w/3 1 3 1 ™
/ cos? () dx / —— dzx V33— dx / ze T dx / x cos(x) dx
™ 0

/4 /4 cos?(z) 1/2 -1

1 4 “+oo -2 1
+4 1 1 T
In(z?) d T2y / 4 / — /7d
/,1 n(@%) do /,2x+3 * o 4249 a2 Jy 12 ™

. Calculer l'aire de la partie du plan dont une description analytique est la suivante

{(w,y) cx € [~1,1],y €R et sin? (%) <y < cos? (%x)}

Donner aussi une représentation graphique de cet ensemble.

. Calculer (si possible)

o0 1 +o0 1 +oo 1
——d ——d ——d
/0 2z il /0 2rz_2" /2 2z 2"

. La vitesse a laquelle s’accroit une population de virus est donnée au cours du temps par la fonction

exp(3t), t > 0.

a) Avec ces données, est-il possible de déterminer la population au temps 0?7 Pourquoi ?

Si la réponse est “oui”, déterminer cette population.

b) Sachant qu’au départ la population était égale & 1 (million d’individus), déterminer la population
au temps t = 1.

. A proposer aux étudiants

(a) Sila somme de deux fonctions f, g est intégrable sur [0,1] alors I'intégrale de la somme f + g
est égale a la somme des intégrales de f et g. Vrai O  Faux O
(b) Si f, g sont deux fonctions continues et intégrables sur [0, +oo] alors
1) toute combinaison linéaire de f et g est aussi intégrable sur[0, +oo]
2) lintégrale d’une combinaison linéaire de f et g est égale & la combinaison linéaire des
intégrales.
Exprimer mathématiquement la partie 2) du résultat énoncé ci-dessus.

(¢) Une fonction continue sur [0, 2] est toujours intégrable sur [0, 2] Vrai O Faux O
(d) Une fonction continue sur [0, 2] est toujours intégrable sur [0, 1] Vrai O  Faux O
(e) Quappelle-t-on largeur d’un découpage ?
(f) On donne le découpage suivant de U'intervalle [0,1] :
1111
0) FEEEREY 1.
5473 2

Que vaut la largeur de ce découpage 7

(g) Sion augmente le nombre de points d’un découpage, on diminue toujours sa largeur.
Vrai O  Faux O
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2.6 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
— Comme f : & — 4/x est une fonction continue sur [1,2], ensemble borné et fermé, elle y est
intégrable et on a

[ vrie= [ = GE v =Gevion

—x

— Comme f:xz+— x e
intégrable et on a

est une fonction continue sur [0, 1], ensemble borné et fermé, elle y est

1 1 1
2
/ xe ¥dr= / xD(—e™") dx = [~z 7]} +/ e dr=—et—[e"]f =21 +1=1-".
0 0 0 €

— Comme f :y > sin®(y) = (1 — cos(2y))/2 est une fonction continue sur [0, 2], ensemble borné et
fermé, elle y est intégrable et on a

1

2w 9 27 1 27 1 on 1 . o 1
sin“(y) dy = 5 1dy— 3 cos(2y) dy = g[y]o - Z[Sln(2y)]0 =5 21 = 7.
0 0 0

— Comme f : x — 1/y/z est une fonction continue sur ]0, 1], ensemble borné non fermé, on doit
étudier I'intégrabilité en 0. Puisque 1/y/x = 1/;101/2, s = 1/2 étant strictement inférieur a 1, la
fonction est intégrable en 0, done sur |0, 1] et on a

1
/ 277 do = [2V7)h = 2.
0

— Comme f : t — In(¢) est une fonction continue sur ]0, 1], ensemble borné non fermé, on doit étudier
l'intégrabilité en 0. Considérons lim+ (t2 In(t)) et levons Pindétermination “0 . 0o” par application
t—0

du théoreme de I’Hospital.
Soit V' =]0, [ avec £ > 0 assez petit. Les fonctions ¢ ~ In(t) et ¢ — t~/2 sont dérivables dans V'
et Dt=1/2 = (=1/2)t=3/2 £ 0Vt € V. De plus, on a

. . In(?) ) D(In(t)) ) t=1 .
1 t1/21 t) =1 — =1 — =] — =21 tl/on.
Jm (87 In(t) = oo =t Smey = A S - 2

Des lors, lim+ (t'/21n(t)) = 0 et puisque cette limite existe et est finie, le critére d’intégration en
t—0

0 (avec § = 1/2 < 1) permet d’affirmer que la fonction est intégrable en 0 et donc sur ]0, 1]. Ainsi,

1 B 1 B N ;o 1 1 o
/Oln(t) dt—/o D(t) . In(t) dt = [t In(t)]} /Ot. - dt = [y = 1.

Autre méthode : la fonction f étant continue et négative sur l'intervalle d’intégration, on peut

vérifier son intégrabilité en 0 et calculer la valeur de son intégrale par application de la définition.
1

Si la limite lim+ In(t) dt est finie alors f est intégrable en 0 donc sur ]0, 1] et la valeur de cette
z—0 z

limite est aussi la valeur de 'intégrale.

Comme

et

lim F(z)=-1- lim (zln(z)) =—-1— lim

z—0t z—01 z—0t T
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on leve I'indétermination “2” par application du théoreme de I'Hospital (les hypotheses étant
vérifiées). Ainsi, puisque
In(x DlIn(x z7 !
lim (z) = lim Az lim —— = lim (—x) =0,
z—0t+ a1 z—0t D(Z‘_l) z—0t+ —x 2 z—0t

f est intégrable sur ]0, 1] et son intégrale vaut —1.

— Comme f : z — /1 — 22 est une fonction continue sur [0, 1], ensemble borné et fermé, elle y est
intégrable. Si on effectue le changement de variables g : t — 2 = sin(¢) entre |0, 7/2[ et ]0,1[, on a

1 /2
/0 V1—22dx /0 \/1 —sin*(t) cos(t) dt
/2
/ Vcos2(t) cos(t) dt

cos?(t) dt

/2 2t
/ + cos( )dt

_ B . sin(2t)r/2

puisque cos(t) > 0si t € [0, 7/2].
— Comme f: 2~ 1/(1+ 2?) est une fonction paire continue sur R, ensemble non borné, il suffit de
vérifier I'intégrabilité en +o0o0. Pour cela, calculons hrf (z? . 1/(1 + 2?)). Cette limite existe et
—+o00

x

est finie puisqu’elle vaut 1. Des lors, par le critere d’intégration en 6 avec 6 = 2 > 1, cela prouve
que f est intégrable en +o00. Ainsi,

+o0 1 +oo 1
/ T2 dx = 2/0 T2 dx = 2[arctan(z)]§™ = 2 ( wgrfm arctan(z)—arctan(0)) = 2. g

— 00

— Comme f : z — 2% 72 est une fonction continue sur [0, +o00|, ensemble non borné, on doit étudier

I'intégrabilité en +oo. Considérons lim (2% . 2%e72") = lim (2% . e727); cette limite vaut 0
T—r+00 Tr—+00
car “a l'infini, la fonction exponentielle domine toute puissance antagoniste de x”. Puisque cette

limite existe et est finie, le critére d’intégration en 0 (avec § = 2 > 1) permet d’affirmer que la
fonction est intégrable en +oo et donc finalement sur [0, +00|. Ainsi,

+oo +oo 6721
/ 22 e dx = / 22 D <— ) dx
0 0 2

“+o0 672x
= O—|—/ zD|— ) dx
O 2

re 2]t e 9
= — —_ —az d
[ 5 } + 2/0 e €T

|
|
8
[\v]
)
b
8
—_
+
8
+
o\
+
3
3
® |
[\o]
8
Q
5

= T.
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— Comme f : x + 1/(x* — 1) est une fonction continue sur [2, +oc[, ensemble non borné, on doit
étudier l'intégrabilité en +o00. Considérons lim (z® . 1/(z® — 1)). Cette limite existe et est finie
Tr—r+00

puisqu’elle vaut 1, ce qui prouve, par le critere d’intégration en 6 avec § = 2 > 1, que f est
intégrable en +oo donc finalement sur [2,4o0[. Calculons tout d’abord une primitive de f en
décomposant cette fonction en une somme de fractions simples. On a, pour tout = # +1,

1 A N B A(z+1)+ Bz —1)
-1 z—-1 z+1  (z—-D(@+1)

ce qui donne

(A+B)x+(A—B):1®{ A+B=0 { A=1/2

A-B=1 B=-1/2

et donc, si x > 2

1 1/ 1 1/ 1 1 1 1 (z-1
— dv = do— = [ —— dv~ -In(z—1)— ~In(z + 1) ~ - .
/x2—1 v 2/95—1 v 2/x+1 v gl —1) =gl +1) 21n(17+1)

Ainsi,

e 1 —1 2-1
/ 5 dr=>| lim In(Z —Inl——=]| = 1 In S 1ln(3).
9 4 —1 2 |z—+o0 r+1 2+1 2 3 2

Représentons graphiquement la région dont on veut calculer I'aire.

Exercice 2

Y

Si f(z) = 22, g(z) = x et h(x) = 2z, d’'une part, les points d’intersection des graphiques de f et g ont
pour coordonnées (0,0) et (1,1); d’autre part, les points d’intersection des graphiques de f et h ont pour
coordonnées (0,0) et (2,4). Ainsi, puisque les fonctions & intégrer sont continues sur tout intervalle fermé
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et borné, on a

1 2
Aire = / (2z —z) dx —|—/ (22 — 2?) dx
0 1

1 2
= /xdx+/(2xfx2)dx
0 1

3 3
7
= 3733
_ 3+18—-14
B 6

2.7 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

f(z) = sin(y/x) : intégrable sur A.

f(x) = z/(1 + 2?) : non intégrable en —co donc non intégrable sur A.
x) = 1/2? : non intégrable en 0 donc non intégrable sur[—1, 1].

(z)
f(z)
f(x) = In(2?) : intégrable sur ]0, 1].
f(x)
f(z)

x) = In(x)/(1 + z?) : intégrable sur ]0, +o0].
z) = In(z)/(1 — 2?) : intégrable sur 0, 1[.
Exercice 2
1 16/3 — /6/2 —10e7? + e 72 /4
1/3 —2 —z /8
non intégrable en + oo 6+ In(7) /12 In(7)/12

Exercice 3

Aire = 2V/2.

Exercice 4
z(t) =5t —3/3, t € [0, 10].

Accélération nulle si t = 5.
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2.8 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

Les deux premiéres fonctions sont intégrables sur A, la troisieme est intégrable sur [1, 400 mais non sur

10, 1].
1(m V3 -2
4<6+2_1> VESL VIOl = 2
—4 6+ In(7) 1”—2 In(7)/12 | In(2)/2

Exercice 2

L’aire hachurée vaut 4 /7.

0.5 1 X

Exercice 3

La premiére intégrale vaut 2v/37/9 et la troisieme In(4)/3.
La deuxieme fonction n’est pas intégrable en 1.

Exercice 4

a) Non, la population est définie & une constante additive pres.
b) P(1) = e*/3+2/3.

Exercice 5

(a) Faux, (b) 1) vrai 2) Vr,s € R : f0+oo(rf(x) + sg(x))dx = TfOJrOO flx) dz + sfoJroc g(x) dz, (c) faux,
(d) vrai,(e) cf. notes de cours, (f) la largeur de ce découpage vaut 1/2, (g) faux.

2.9 Exercices sur la liste 4 : les nombres complexes

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Dans tout ce qui suit, sauf mention du contraire, z est I'inconnue réelle.

Liste 2002/2003

1. Déterminer les parties réelle et imaginaire, le module et le conjugué de chacun des complexes
suivants.

L gy, EEL 2t
b WOl T oyt
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2. a) Déterminer la forme trigonométrique des complexes suivants :

b) Déterminer les racines quatriemes du complexe —1. Représenter ces racines.

Liste 2003,/2004

1. Déterminer les parties réelle et imaginaire, le module et le conjugué de chacun des complexes
suivants.

AT 2+1  2+1 5 1 1 ~3i+1
- —i+3 —
b Y 5T e U @® Sk el

2. Résoudre les équations suivantes dans C :
2iz+3=0, 2°44=0, 2°4+z+1=0.

3. Déterminer les racines cubiques du complexe —2 et en donner la représentation géométrique.
4. Déterminer les racines cubiques du complexe 1+ et du complexe —i. En donner une représentation
géométrique.
5. QCM
(a) Le carré d’un nombre complexe est toujours un nombre positif O  un nombre négatif O
un nombre imaginaire pur 0  aucune réponse correcte O
(b) La partie réelle du produit de deux nombres complexes est toujours égale
au produit des parties réelles de ces nombres O
a la somme des parties réelles de ces nombres O
a la somme de la partie réelle de I'un et de la partie imaginaire de I'autre O
au produit de la partie réelle de I'un et de la partie imaginaire de 'autre O
aucune réponse correctel
(¢) Le conjugué du complexe i/(i + 1) est —-i/i+1) 0 i/(—i+1)0 —i/(—i+1)D0
aucune réponse correcte O

Liste 2004/2005

1. Déterminer les parties réelle et imaginaire, le module et le conjugué de chacun des complexes

suivants. )
2i+1

141

2. Résoudre les équations suivantes dans C et en représenter les solutions :

i+1, (14+49)?% (20 +1)(—i+3),

i2241=0, 422°4+1=0, 22—z24+1=0.

3. Déterminer les racines cubiques du complexe ¢ et en donner la représentation géométrique.

4. Déterminer les racines quatriemes du complexe —16. En donner une représentation géométrique.

Déterminer les racines carrées et les racines quatriemes du complexe (iv/3 — 1)/2. En donner la
représentation géométrique.

2.10 Résolution des exercices de la “liste type 2002/2003”

Exercice 1

Rappelons tout d’abord que si z = a + ib (a,b € R) alors sa partie réelle, notée Rz, est a, sa partie
imaginaire, notée Sz, est b, son module, noté |z|, est va? + b? et son conjugué, noté z, est a — ib.
Rappelons aussi que 2.z = |z|2.



2.10. LISTE 2002/2003 33

Ecrivons les différentes expressions données sous la forme a + ib; on a

1)i=0+1i

2) 1/i = —i si on multiplie numérateur et dénominateur par —i, conjugué de 4

3) i(—i +3) = —i? + 3i = 1 + 3i puisque i = —1
2i+1 142i)(—1—2¢ —1 — 4i — 44? —1+4—-4i 3—4i

4) Z,+ = (1+2i)( ) = ! G * - ! si on multiplie numérateur et
2i—1 (—=1)2 +22 5 5 5

dénominateur par —1 — 2i, conjugué de —1 + 2i
20 +1  (1+2i)(1+21) 1+ 4i + 442 _1—-4+4i  -3+4i

5) ir1 T 12 (22 3 3 =—3 (méme démarche que ci-dessus).
Ainsi,
z Rz Sz |z z
0 1 1 —1
1/i 0o | -1 | 1 i

i(—i+3)| 1 3 V10 1—3i

21+ 1
L Vs a1 | (344i)/5
2t —1
21+ 1

—3/5| 4/5 | 1 | (=3—4i)/5
2L s | 4 (~3—4i)/

Exercice 2

a) Forme trigonométrique d’un nombre complexe

— La forme trigonométrique de i est e?™/2 car i = 0+ . 1 et donc = v/02 + 12 = 1. De plus, comme
cos(f) =0 et sin(f) = 1 avec 6 € [0,27[, on a 6 = /2.

— Considérons z = 1+ i;o0n a |z| = vV12+1%2 = V2 et, des lors, z = \@(\/5/2 +1 \@/2) Ainsi,
cos(f) = sin(f) = v/2/2 avec 0 € [0,27], ce qui donne § = 7/4. Pour conclure, la forme trigo-
nométrique de 1+ i est donc v/2 e?™/4.

— Le complexe 1/i = —i s’écrit sous forme trigonométrique e!7/2) puisque r = /02 + (=1)2 = 1,
cos(f) = 0 et sin(f) = —1 avec 0 € [0, 27[.

b) La forme trigonométrique de —1 est ‘™. Ainsi, ses racines quatriémes sont données par z, = e
avec k =0, 1,2,3. Des lors, on a

i(m42km) /4

20 = /N = BT/ BT/ o i(TR/4),

Ces racines quatriemes se représentent sur le cercle centré a l’origine de rayon 1 et sont les sommets d’un

carré, points communs au cercle et aux droites d’équation y =z et y = —z.
Y

1

21 20

X
-1 1

22 <3

-1
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2.11 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

CHAPITRE 2. REVISIONS ET COMPLEMENTS

z R |Sz| |2l | = 2 Rz | Sz |2 z
i 01| 1 | —i (2i41)/(2i—1) | 3/5 | —4/5| 1 | (3+4i)/5
1 0|-1] 1 i (20 4+1)/(=2i+1) | =3/5| 4/5 | 1 | (=3 —4i)/5
i(—i+3)| 1| 3 |V10|1-3i i3 0 -1 |1 i
z Rz | Sz | |2 z
1/it 10| 1 1
1/(=i+1) 1/2 | 1/2 | V2/2 | 1-1i)/2
(=3i+1)/(i—1)| =2 | 1 | /5 | —2—i

Exercice 2

S = {3i/2} S = {-2i,2i} S ={(-1-iv3)/2,(-1+iv/3)/2}

Exercice 3

z0 = 2 ei(”/3), 21 = V2 e, 20 = /2 i(57/3),

Représentation : sommets du triangle équilatéral inscrit dans le cercle centré & I'origine et de rayon /2.
Un des sommets appartient a 'axe des X, son abscisse étant négative.

Exercice 4

Pour 1+ : zp = V/2 ei(7/12) 2 = V2 et37/4) 29 = /2 £1177/12)

Représentation : sommets du triangle équilatéral inscrit dans le cercle centré & Porigine et de rayon v/2.
Un des sommets appartient a la deuxieme bissectrice et est situe dans le second quadrant.

Pour —i : zg = €(7/2) 2 = H(77/6) 29 = €'(117/6)

Représentation : sommets du triangle équilatéral inscrit dans le cercle centré a l'origine et de rayon 1. Un
des sommets appartient a I’axe des Y, son ordonnée étant positive.

Exercice 5 : QCM

(a) aucune réponse correcte
(b) aucune réponse correcte

(¢) —i/(=i+1)
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2.12 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

z Rz | Sz || z
i+1 1 1 V2 1—34
(1+14)2 0 2 2 —92i

(20 +1)(—=i+3)| 5 | 5 | 5v/2 | 556

(20 +1)/(i+1) | 3/2|1/2 | V/10/2 | (3 —1i)/2

Exercice 2

S ={-v2(1 +19)/2,v2(1 +1)/2} S ={-i/2,i/2} S ={(1—iv3)/2,(1 +iV3)/2}

Exercice 3

i(57/6) (i(37/2)

Les racines cubiques de 7 sont zp = ei(”/G)7 z1=¢€ , 29 = . Ce sont les sommets du triangle
équilatéral inscrit dans le cercle trigonométrique dont le sommet correspondant a zo est le point de coor-
données (0, —1).

Exercice 4

Les racines quatriémes de —16 sont zy = 2e/(7/4) 2 = 2¢'67/4) 5y = 2¢67/4) 2y = 21 7T7/4) | Ce sont
les sommets du carré inscrit dans le cercle centré a origine et de rayon 2, zg correspondant au point de
coordonnées (v/2,1/2).

Les racines carrées de (iv/3 — 1)/2 sont zy = €("/3) 2z, = €'(47/3) Ce sont les points diamétralement
opposés du cercle trigonométrique dont 1'un a pour coordonnées (1/2,v/3/ 2).

Les racines quatriemes de (iv/3 — 1)/2 sont zg = e/ (7/6) 2 = ¢#27/3) 2, = il ,z3 = el Ce sont
les sommets du carré inscrit dans le cercle trigonométrique, zq correspondant au point de coordonnées

(v3/2.1/2).

77 /6) oTr/S)

2.13 Exercices sur les listes 5 et 6 : les équations différentielles

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Liste 2002-2003

1. Résoudre les équations suivantes

1) iDf(z) 4+ 3f(x) =2z +1 2) Df(z) = cos(z) + 2f(x)
3) 2D f(x) + 4f(z) = e7>" 4) D*f(z) + Df(x) = ze*
5) D2f(z) +2Df(x) + f(x) = 1 + sin(x) 6) D?f(x) + 4f(x) = cos(2x)

Dans le cas 1), quelle est la solution qui s’annule en 17
Dans le cas 4), quelle est la solution qui vaut 1 en 1 et dont la dérivée s’annule en 17

Dans le cas 6), quelle est la solution qui s’annule en 0, ainsi que sa dérivée ?
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Liste 2003-2004

1. Soit r > 0. Représenter graphiquement la fonction y(z) = vr? — a2, x € [—r,r] et montrer qu’elle
vérifie ’équation différentielle
yDyy+2 =0, z € —rr|

2. Résoudre les équations différentielles ou les systéemes suivants, en spécifiant sur quel intervalle on

se place
o { SO bie) + s =1/ )
D*f(z) +9Df(z) == D?f(z) +9f(z) ==z
¢ f()=1 d) ¢ f(0)=0
Df(1)=0 Df(0)=0

e) 9D?f(z) + 6D f(x) + f(z) = 1+ ze® f) 9D?f(x) + 6D f(x) + f(z) = e~ */3
g9) iD*f(x) — f(z) = e* h) D*f(x) + 4f(x) = cos(x)
i) D?f(z) + 4f(x) = cos?(x)

Liste 2004-2005

1. A proposer aux étudiants.
— L’équation différentielle (D;y)? = 4(y + 1) est -elle linéaire ?
Montrer que la fonction g(t) = t? — 2t, (t € R) vérifie le systéme

(Dy)* =4(y+1)
y(0) =0
y(2) =0

— Dans I’étude des solutions des équations différentielles linéaires a coefficients constants, on a

rencontré des fonctions fondamentales que l'on a appelées fonctions du type “exponentielle
polynome”. Comment s’écrit explicitement une telle fonction ?

2. Résoudre les équations différentielles ou les systemes suivants, en spécifiant sur quel intervalle on

se place
PDf(x) +2f(x) = 3i 4D*f(x) + Df(z) =
2 1 <k DIt
AD*f(z) + f(z) =@

c) { f(0)=0 d) D?f(z) + Df(z) — 2f(z) = ze® + €>*

e) 4D%f(x) + f(z) = 1 + sin(z) + sin?(z) f) D?f(z) +4Df(x) +4f(z) =1+ e 2*

2.14 Résolution des exercices de la “liste type 2002/2003”

Exercice 1

1. Résolvons ’équation d’ordre 1 homogene iDf(z) + 3f(x) = 0. L’équation caractéristique est
iz + 3 = 0 et son seul zéro est 3i. Deés lors, les solutions de ’équation homogene sont les fonctions

fu(r) =Ce** xeR
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ou C' est une constante arbitraire complexe.

Cherchons a présent une solution particuliere sur R puisque le second membre x +— g(x) = 22 + 14
est une fonction continue sur R. Comme on peut écrire g(z) sous la forme (2z + ) . €%, produit
d’un polynéme du premier degré et d’une exponentielle dont le coefficient 0 de I’argument n’est
pas solution de I’équation caractéristique, il existe une solution de la forme fp(z) = Az + B ou A
et B doivent étre déterminés. Puisque Dfp(xz) = A, on a

iDfp(z)+3fp(x)=224+i<iA+34Ax+3B=2r+i & 34 =2 A=2/3
P PR = o tA+3B =1 B=i/9
Ainsi, on obtient une solution particuliere
20 1
et les solutions de I’équation donnée sont les fonctions
f(x):C’e?’””—F?x—Fg z €R

ou C' est une constante arbitraire complexe.

Déterminons la solution f qui s’annule en 1 ¢’est-a-dire telle que f(1) = 0. Ona Ce® +2/3+i/9 = 0 <
Ce¥+(6+14)/9=0« C=(—6—1) e 3/9. La solution cherchée est donc la fonction

6 + Z 3i(w71) 2$ Z
= — —+ -, z€R
f(z) 5 ¢ tgtg @
2. Résolvons l'équation d’ordre 1 homogene Df(xz) — 2f(x) = 0. L’équation caractéristique est
z — 2 = 0 et son seul zéro est 2. Des lors, les solutions de ’équation homogene sont les fonc-

tions
fu(z)=C ée**, xR

ou C' est une constante arbitraire complexe.

Cherchons maintenant une solution particuliere sur R, le second membre x — g¢(z) = cos(x)
étant une fonction continue sur R. De plus, comme I’équation est a coefficients réels et que
cos(z) = R(e'), une solution particuliere sera donnée par la partie réelle d'une solution par-
ticuliere de DF(z) — 2 F(x) = €. Le second membre de cette équation est I’exponentielle
polynéme 1 . €/, produit d’un polynéme de degré 0 et d’une exponentielle dont le coefficient i de
I’argument n’est pas solution de 1’équation caractéristique. Il existe donc une solution de la forme
F(x) = A e® ot A doit étre déterminé. Puisque DF(z) = Ai €'*, on a
—2—1

DF(z) —2F(z) =" & Ai e —24 e = e & (-2+i))A=15A=-2—-ic A= -

—2—1 . 2 )
Ainsi, F(z) = 3 Lt = (— — 2) (cos(x) + isin(z)) et, dés lors,

fr(x) =RF(z) = 7% cos(x) + ésin(x),x €R.

En conclusion, les solutions de ’équation donnée sont les fonctions
2x 2 1 .
fl@)=Ce* - gcos(x) + R sin(x), ¢ €R

ou C est une constante arbitraire complexe.
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3. Résolvons I’équation d’ordre 1 homogene 2D f(x) + 4f(x) = 0. L’équation caractéristique est

2z+4 = 0 et son seul zéro est —2. Des lors, les solutions de ’équation homogene sont les fonctions
fa(lr)=Ce ™ x€R
ou C' est une constante arbitraire complexe.

Cherchons & présent une solution particuliere sur R puisque le second membre x — g(z) = e=2%

est une fonction continue sur R. Comme on peut écrire g sous la forme de I’exponentielle polynéme
1 . e 2%, produit d'un polynéme de degré 0 et d'une exponentielle dont le coefficient —2 de
I’argument est solution simple de 1’équation caractéristique, il existe une solution de la forme
fr(x) = Az e72% ot A doit étre déterminé. Puisque Dfp(x) = A e72* —2Ax e 2% on a
1
2Dfp(z) +4fp(r) = e 2 & (24 —4Ax)e P +4Az e = T 2 24=1 A= 3

Ainsi, on obtient une solution particuliere

et les solutions de I’équation donnée sont les fonctions
T —2x
f(:z:):(C+§)e , r€R

ou C' est une constante arbitraire complexe.

. Résolvons I'équation d’ordre 2 homogene D?f(x) + Df(x) = 0. L’équation caractéristique est

22 + 2z = 0 dont les zéros sont —1 et 0. Dés lors, les solutions de I’équation homogene sont les
fonctions

fu(x)=Ch AT L Che*=0C1+Cye % z€R

ou (7 et Cy sont des constantes arbitraires complexes.

Cherchons & présent une solution particuliere sur R puisque le second membre z — g(x) = x e*
est une fonction continue sur R. Comme g est une exponentielle polynéme, produit d’un polynome
du premier degré et d’une exponentielle dont le coefficient 1 de I'argument n’est pas solution
de Péquation caractéristique, il existe une solution de la forme fp(x) = (Az + B) e* ol A et
B doivent étre déterminés. Puisque Dfp(x) = A e* + (Az + B) e = (Ax + A + B) € et
D*f(z)=Ae*+ (Az+ A+ B) e®* = (Az +2A+ B) e*,0n a
D*fp(x) + Dfp(x) =2 ¢” & (2Ax +3A+2B) * =z e” & { 24 =1 { A=1/2
3A+2B=0 B=-3/4

Ainsi, on obtient une solution particuliere

et les solutions de I’équation donnée sont les fonctions

flz)=C1 4+ Cy e_””—l—(g—i) e’, xeR

ou (7 et C5 sont des constantes arbitraires complexes.
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Déterminons la solution qui vaut 1 en 1 et dont la dérivée s’annule en 1 c’est-a-dire la solution f
telle que f(1) =1et Df(1) =0. Comme Df(x) = —Cy e "+ (1/2 4+ x/2—3/4) €”, on a

fy =1 Ci+Cyet—e/da=1 Cr=1 .
{Df(l):() @{—1(32;1“/4:0 ‘:’{Cizem ’

la solution cherchée est donc la fonction

2—x
f(x):1—|—64 +(x_3> e, r eR.

5. Résolvons I'équation d’ordre 2 homogene D? f(x) + 2D f(z) + f(x) = 0. L’équation caractéristique

est 22 + 2z + 1 = 0 laquelle est équivalente & (z + 1)? = 0, équation qui admet —1 comme zéro
double. Des lors, les solutions de I’équation homogene sont les fonctions

fu(z) = (Ciz+Cy) e®, z €R

ou Cy et C5 sont des constantes arbitraires complexes.

Cherchons une solution particuliere sur R puisque le second membre x — g(x) = 1 + sin(x) est
une fonction continue sur R. Comme g est une somme de deux fonctions, cherchons tout d’abord
une solution particuliere de D?f +2Df + f = 1; on voit immédiatement que la fonction constante
1 convient. Cherchons & présent une solution particuliere de D?f(x) + 2D f(z) + f(z) = sin(x).
Comme 1'équation est & coefficients réels et que sin(z) = I(e'*), une solution particuliere sera
donnée par la partie imaginaire d’une solution particuliere de D*F(z) +2DF(x) + F(z) = €'*. Le
second membre de cette équation est ’exponentielle polynéme 1.e*, produit d’un polynéme de
degré 0 et d’'une exponentielle dont le coefficient ¢ de 'argument n’est pas solution de ’équation
caractéristique. Il existe donc une solution de la forme F(z) = A €™ ou A doit étre déterminé.
Puisque DF () = Ai '® et D?f(x) = —A €™, on a
D?F(z)+2DF(z)+ F(z) = & (~A+24i+ A) e’ =€ ©2iA=1&2A=—io A= —i/2.
Ainsi, '

i

F(z) = —3 e = —§(cos(x) + isin(z))

et, deés lors, une solution particuliere fp de I’équation de départ est
1
fr(x) =14+SQF(x)=1- icos(ac), x €R.
En conclusion, les solutions de I’équation donnée sont les fonctions

f@)=(Ciz+Cz) e + 1~ %cos(x), z€R

ou C et Cy sont des constantes arbitraires complexes.

6. Résolvons 1’équation d’ordre 2 homogene D?f(x) + 4f(z) = 0. L’équation caractéristique est
22 +4 = 0; elle est équivalente & 1’équation 2% — 4i? = 0 dont les zéros sont 2i et —2i. Des lors, les
solutions de ’équation homogene sont les fonctions

fH(l') = Cle2iw + 026_2m, zeR
ou C1, 5 sont des constantes complexes ou, ce qui revient au méme, les fonctions
fu(x) = Cy cos(2x) + Cysin(2z), = € R

ou C et C5 sont des constantes arbitraires complexes.
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Cherchons & présent une solution particuliere sur R puisque le second membre z — g(z) = cos(2z)
est une fonction continue sur R. Les coefficients de 1’équation étant réels et cos(2x) étant la partie
réelle de e?**, une solution particuliere sera donnée par la partie réelle d’une solution particuliere
de D?F(z) + 4F(x) = €2, Le second membre de cette équation s’écrit 1 . e** produit d'un
polynome de degré 0 et d’une exponentielle dont le coefficient 27 de I'argument est solution simple
de I'équation caractéristique. Il existe donc une solution de la forme F(x) = Az €?® ot A doit
étre déterminé. En appliquant la formule de Leibniz, on a

D?F(z) = CYD°(Az).D?(e**) + C3 D(Az).D(e**) + C3D?*(Az).D"(e*™*) = —4Aze®™ + 4iAe*™

et
D2F(2) + AF(2) = €%® & (—4Az + 4iA + 4Az) ¥® = ¥ o 4id=1o4A=—io A= _TZ'
Ainsi, ) .
F(x) = _Tm e = —%(cos(?m) + isin(2x))

et, des lors, une solution particuliere fp de I’équation de départ est donnée par
fr(x) =RF(z) = %sin(?x)m €eR.
En conclusion, les solutions de ’équation donnée sont les fonctions
F(z) = Cy cos(2z) + (c2 + %) sin(2z), = € R
ou (7 et Cy sont des constantes arbitraires complexes.

Cherchons la solution qui s’annule en 0, ainsi que sa dérivée c’est-a-dire la solution telle que
f(0)=0et Df(0) =0. Comme Df(x) = —2C;sin(2z) + sin(2z)/4 + 2 (Cy + x/4) cos(2x), on a

F(0)=0 Cy =0 =0
{Df(O)zO @{25220 ©{C;:0 ’

la solution cherchée est donc la fonction

flz) = %sin(Qm), z €R.

2.15 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

Représentation graphique : points d’ordonnée positive du demi-cercle centré a 1’origine et de rayon r.

Exercice 2
a) f(z) = (—i/2)e*@=D £ 3i/2, x € R.

b) f(z) = e *(c + arctan(e®)), € R, ¢ constante complexe arbitraire.

c) f(x) = 1379/1454 + 8¢%1 =) /729 + 22 /18 — /81, = € R.

d) f(z) = —sin(3x)/27 + /9, z € R.

e) f(x) = (c1x + ca)e /3 + (x/16 — 3/32)e® + 1, x € R, ¢; et ¢y constantes complexes arbitraires.
) f(

)
x) = (12 + co +22/18)e™?/3, 2 € R, ¢; et cy constantes complexes arbitraires.
g) fz) = creVHD1HDT o) (V2= _(114) /92 ¢® 1z € R, ¢ et ¢, constantes complexes arbitraires.
) f(x) = ¢1 cos(2z) + casin(2z) + cos(x)/3, = € R, ¢1 et co constantes complexes arbitraires.

i) f(z) = c1 cos(2z) + (/8 + ¢2) sin(2x) + 1/8, = € R, ¢1 et c2 constantes complexes arbitraires.
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2.16 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

L’équation différentielle n’est pas linéaire.

Exercice 2

a) f(z)=(-1- 32’/2)@27:0_15) +3i/2, z €R.

b) f(a) =a?/2 — 4z +33/2 - 12 479/1 2 eR

¢) f(x) =x—2sin(z/2), x €R

d) f(z) = Cre 2 4+ (C’z + x2/6 — :E/9) e 4+ e2m/4, x € R ou C1, Cy sont des constantes complexes arbi-
traires.

e) f(z) = Cycos(x/2) + Cysin (x/2) + 3/2 —sin(z) /3 + cos(2x) /30, x € R ot Cq, Cy sont des constantes
complexes arbitraires.
f) f(z) = (Ciz + Cs +2%/2) e **, x € R ot 1, C sont des constantes complexes arbitraires.
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Chapitre 3

Calcul matriciel

3.1 Exercices sur les listes 6-7-8

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Liste 2002-2003

1. Soient les matrices
1 0 -1 .
A‘(i 2 z‘+1>’ B=| i 0
Calculer (si possible)
iA, A+ B, A+ B, AA*, AB, BA, BB.

2. Calculer le déterminant des matrices suivantes.

1 -1 i Lo
-2 5 ’ —i i)’ L
-1 1 1
3. Factoriser le déterminant des matrices suivantes.
1o 9 r x? 23 —a—z a 0
( 9 1_» ) , y y> oy |, b —2b—=x b
z 22 22 0 a —a—x
4. Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes.
1

10
<_11_21>, 01 -1
11 1

5. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi 7 Si elles le sont, en déterminer une forme diagonale, ainsi qu’une
matrice inversible qui y conduit.

-1 1

. 1 10 0
GG (L (hr) (3
0 0 1 1 -1 0

43
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QCM + justifier la réponse
— Si A est une matrice carrée telle que A% = 0, alors A est la matrice nulle Vrai O Faux O
— Le déterminant d’une matrice carrée dont les éléments sont des complexes est
un complexe O une matrice O un polynéome O aucune proposition correcte O
— Si A et B sont des matrices carrées de méme dimension qui vérifient AB = A, alors B est la
matrice identité Vrai O Faux O
— Si A est une matrice qui vérifie A = A*, si ¢ € C et si on pose B = cA, alors B = B*
. Vrai O Faux O
— Si M est une matrice qui vérifie MM = 1, alors M admet un inverse Vrai O Faux O
— Si A, B sont deux matrices de méme format, alorsona A+ B =B+ A Vrai O Faux O
— Si A, B sont deux matrices carrées de méme dimension, alors on a (A+ B)? = A2+ 2AB + B?
Vrai O Faux O
— Les valeurs propres d’une matrice carrée réelle sont toujours des nombres réels
Vrai O Faux O

— Une matrice carrée peut étre inversible et avoir une valeur propre nulle Vrai O Faux O
— La somme de deux vecteurs propres de méme valeur propre est encore un vecteur propre de
méme valeur propre Vrai O Faux O

Liste 2003-2004

1.

Soient les matrices
—2 21
. 1 0 -1 —i+2 3
= — 3 = =
A= i o0, B <¢2i+1>’ ¢ ( 4i —z‘>'
-1 1
Si possible, effectuer les opérations suivantes. Si cela ne I'est pas, en expliquer la raison.

iA, C*, A+ B, A+ B, AA*, AB, BA, CB, CA.

. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

o -1 0 -2 1 4 -2
( _22 . > -1 1 1 |, 1 -1 1
! -1 -1 1 1 -1 1

Le déterminant de la matrice suivante est un polynéme en x. Factoriser ce polynome.

-z 1
2 2—zx )’
Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes.
1

11
(121> 01 —1
Lo 10 1

Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables 7 Pourquoi ? Si elle le sont, en déterminer une forme diagonale, ainsi qu'une
matrice inversible qui y conduit.

1 1 10 1 i 100 3.—2.4
5 o ) L) o) 010 |, 2 6 2
! 01 1 4 2 3

Répondre aux questions suivantes et justifier la réponse.
— Si A est une matrice carrée telle que A2 =0, alors A est la matrice nulle Vrai O Faux O



3.1. EXERCICES SUR LES LISTES 6-7-8 45

— Si M est une matrice qui vérifie M M = 1, alors M admet un inverse Vrai O Faux O
— Si A, B sont deux matrices de méme format, alorsona A+ B=B+ A Vrai O Faux O
— Si A, B sont deux matrices carrées de méme dimension, alors on a (A + B)? = A? +2AB + B>
Vrai O Faux O
— Les valeurs propres d’une matrice carrée réelle sont toujours des nombres réels
Vrai O Faux O

— Une matrice carrée peut étre inversible et avoir une valeur propre nulle Vrai O Faux O
— La somme de deux vecteurs propres de méme valeur propre est encore un vecteur propre de
méme valeur propre Vrai O Faux O
— La somme de deux valeurs propres d’une méme matrice est encore une valeur propre de cette
matrice Vrai O Faux O
— Si le complexe Ao est une valeur propre de la matrice M alors Ao est une valeur propre de la
matrice M Vrai O Faux O
— Si un complexe est une valeur propre d’une matrice, alors il est aussi valeur propre de la matrice
transposée Vrai O Faux O

Liste 2004/2005

1.

. Déterminer la forme générale des matrices qui commutent avec la matrice

Soient les matrices

. oed N2 /.3 .
A:<_022 2—z1 (1J1FZ—)/Z ) B:(i (2) i:tll ) CZ(ZH —31 )
Si possible, effectuer les opérations suivantes. Si cela ne I'est pas, en expliquer la raison.
iA, (iB)*, A+ B, A+ B, AA*, AB, BA, CB.
g (2) ) (resp. avec
la matrice ( g ? )7 avec la matrice ( ? (2) ) ).

Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

i1 L2012
o5 ) ozl 2 21
1 2 2

Le déterminant des matrices suivantes est un polynéme en . Factoriser ce polynéme en un produit
de facteurs du premier degré.

2—xz -4 2—z -4
1 x+1 )’ -1 z+1 /)
Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne « € R).
-1 1 cos(a)  sin(a) b2 =
0 i)’ sin(a) —cos(a) )’ b3 0
0 -2 1
Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-

elles diagonalisables ? Pourquoi ? Si elles le sont, en déterminer une forme diagonale, ainsi qu’une
matrice inversible qui y conduit.

(22) (20) (20)(1 i+1> bl R
2 2 2 2 0 2 14i 1 o) R
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7. Répondre aux questions suivantes et justifier la réponse.

Si A est une matrice carrée telle que A? = A, alors A est la matrice nulle ou est la matrice
identité
. ~_ VraiO Faux O

Si M est une matrice carrée qui vérifie MM = 1, alors M vérifie aussi MM =1

Vrai O Faux O
Si A, B sont deux matrices de méme format, alors on a A(A + B) = A% + AB

Vrai O Faux O
Si A, B sont deux matrices carrées de méme dimension, alors on a A> — B? = (A— B) (A+ B)

Vrai O Faux O

Une matrice carrée peut étre inversible et avoir une valeur propre nulle Vrai O Faux O
La somme de deux vecteurs propres de méme valeur propre est encore un vecteur propre de
méme valeur propre Vrai O Faux O
La somme de deux vecteurs propres de valeur propre nulle est encore un vecteur propre de
valeur propre nulle Vrai O Faux O
La trace du produit de deux matrices carrées de méme dimension reste la méme si on permute
l’ordre des facteurs du produit. Vrai O Faux O

3.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1

e On a

. i 0 i
ZA_<1 2i 1+z‘>'

e La matrice A est une matrice de format 2 x 3 tandis que B est une matrice de format 3 x 2. Ces matrices
n’ayant pas le méme format, il est impossible de les additionner.

e Puisque B est une matrice de format 3 x 2, B est de format 2 x 3 et peut étre additionné a A, matrice
de méme format. On a

= (10 -1 11 -1\ (2 1/i -2
A+B_(i 2 1—|—i>+(—i 0 1>_<0 2 2—|—i)'

e Puisque A est une matrice de format 2 x 3, A* est une matrice de format 3 x 2; le produit AA* est
donc possible et donne une matrice de format 2 x 2. On a

ainsi,

N 1 i 1 —1i
A= 0 2 donc A* = 0 2 ;
-1 1414 -1 1—14

1 —1
« (1 0 -1 _ 2 -1
AA_(i21+i> 0 2. _(—1 7)'
-1 1—1

e Le produit AB est possible puisque A est de format 2 x 3 et B de format 3 x 2; le produit est une
matrice de format 2 x 2. On a

1 =
10 -1 ‘ 2 —1-i
AB_(i 2 1+i> O (1) _<—1—2i 2+ )

e Le produit BA est possible puisque B est de format 3 x 2 et A de format 2 x 3; le produit est une
matrice de format 3 x 3. On a

1 —i 2 -2 —i
BA=| —-i o0 (1. 0 -1 ): —i 0 i
-1 1
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o Le nombre de colonnes de B est différent du nombre de lignes de B ; le produit BB est donc impossible.

Exercice 2

e On a det ( _12 _51 ) =15—(~1).(-2) = 3.
oOnadet(_ )—22+12——2
e On a

1 0 -1 0 1 0
det 1 1 1 = 1 1 1 si on remplace Ly par L + L3

-1 1 1 -1 1 1

1 1 , . . o
= (-1 1117 —2 en développant le déterminant selon la premiere ligne.

Exercice 3

. Onadet( 1;x lix ) =l-2?-4=1-2-2)1-2+2)=(—2—-1)(3—2).
e On a
x z2 a3
det | y y? o3
z 22 28
1 = a2
= xyz|1l y vy mise en évidence du facteur x sur Ly, y sur Lo et z sur Ls
1 z 22
0 z—2z xz2-—22
= ayz|0 y—z y?—22 si on remplace Ly par L1 — L3 et Lo par Ly — L3
1 z 22
0 1 z+42 r—zsur L
= zyz(z—2)y—2)|0 1 y+=z mise en évidence du facteur { !
1. .2 y — z sur Lg
1 z4=2 . , . -\
= zyz(z—2)(y—2) 1 y+z en développant le déterminant selon la premiere colonne
= ayz(z—2)(y—2)(y+z—z—2)
= ayz(r—z)(y —2)(y — o).
—a—x a 0
e On a det b —2b—x b
0 a —a—x
- a 0
= | -2 —-2b—2x b si on remplace Cy par C; + Cy + C3
—x a —a—x
0 0 a+x
= |—x —-2b—=x b si on remplace Ly par Ly — L3
—x a —a—x
—r —-2b—x . . . T
= (a+x) . a en développant le déterminant selon la premiere ligne
1 -2b—=x . .
= —z(a+x) 1 u mise en évidence du facteur (—z) sur C4

= —z(a+x)(a+2b+ ).
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Exercice 4

e Posons A = jl _21 > Puisque det A =2 —1 =1 # 0, la matrice A est inversible. Déterminons les
cofacteurs (A); ; des éléments (A); ;, (i,7 =1,2) de A.

On a (A)l,l =2, (./4)1,2 =1, (./4)2,1 =1, (A)272 = 1. On obtient ainsi

L1 - (21
4 _detAA_ 1 1

1 0 1
e Posons A = 01 -1 |.Ona
11 1
1 0 1
detA = |0 1 -1 si on remplace Lz par L — L
01 0
1 - , . . N
=11 o en développant le déterminant selon la premiere colonne
= 1.

Puisque det A # 0, la matrice inverse existe.

Déterminons les cofacteurs (A); ; des éléments (A); ;, (4,5 =1,2,3) de A. On a
1 -1 0 -1 0 1
(A1 = 11|53 (A2 =(-1) 1 1 |78 (A3 = 1 11= b
0 1 11 1 0
o= (D] Tet @ea=|] T=0 aa=|] V)=
0 1 1 1 1 0
War = Ll =] L L ea=|) Y-t
Ainsi, on obtient
1 2 1 -1
~1
= A= -1 0 1
det A 1 -1 1
Exercice 5
5.1) Considérons la matrice A = ; ; .
— Le polynome caractéristique de A est
1—x 1 ) )
det(A—X1)= 9 9_\ =1-X)2-XA)—-2=2-3A+X-2=X-3A=)\A-3).

Les valeurs propres de A sont donc 0 et 3; ces valeurs propres étant simples, la matrice A est
diagonalisable.
— Cherchons les vecteurs propres associés a la valeur propre 0 c’est-a-dire les vecteurs non nuls

Xz(i)telsque(A—Ol)XzO. On a

(11 T\ r+y=0 B _ 1
(A—Ol)X_<2 2>(y)—0@{2x+2y0 @w—i—y—O@X-x(l).

Les vecteurs propres associés a la valeur propre 0 sont donc les vecteurs

ch(_ll), c € Cy.
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— Cherchons les vecteurs propres associés a la valeur propre 3 c’est-a-dire les vecteurs non nuls

Xz(i)telsque(A—?)l)X:O. On a

(-2 1 T\ 2z +y=0 o . 1
(A—31)X—< 9 —1><y>_0®{2x—y20 & 2z y—O(:)X—ac(Q).

Les vecteurs propres associés a la valeur propre 3 sont donc les vecteurs

1
X':C<2>7 c € Cyp.
1

A e (00
1 2)esttelleque5’ AS_(O 3>.

5.2) Soit la matrice A = ( (1) 1 ) .

— Le polynome caractéristique de A est

— La matrice S = (

1-A 1

det(A—-X1) = 0 1-21

=(1-\)>2

La matrice A possede donc la valeur propre double 1.
— Cherchons les vecteurs propres associés cette valeur propre 1 c’est-a-dire les vecteurs non nuls

X:<Z>te1sque(A—l)X:O. On a

(A—l)X:<8 é)(i):O@yzO@sz(é).

Les vecteurs propres associés a cette valeur propre sont donc les vecteurs

1
X:c(o), c € Cy.

. . 1 . o
Comme ils sont tous multiples du vecteur 0 ) deux vecteurs propres sont toujours linéairement
dépendants et donc la matrice A n’est pas diagonalisable.
L as . 1 3
5.3) Considérons la matrice A = i i

— Le polynome caractéristique de A est

det(A-x1)=|1=A 1

S FAEN = (1) 1= (1A DA D) = SA 2N,

Les valeurs propres de A sont donc 0 et 2; puisque ces valeurs propres sont simples, la matrice A
est diagonalisable.

— Cherchons les vecteurs propres associés a la valeur propre 0 c’est-a-dire les vecteurs non nuls

X:<Z>telsque(A—Ol)X:O. On a

(1 x\ z+iy =0 . - —1
(A—Ol)X—(_i 1)<y>_0<:>{ ity =0 <:>x+zy—0<:>X—y< 1 >

Les vecteurs propres associés a la valeur propre 0 sont donc les vecteurs

X:c( _12>, c € Cy.
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— Cherchons les vecteurs propres associés a la valeur propre 2 c’est-a-dire les vecteurs non nuls

Xz(i)telsque(A—2l)X:0. On a

(-1 1 T\ —r+i1y=0 B . . {
(A21)X<—i _1><y>0¢>{ Ciz—y=0 & x+zy0¢>Xy<1).

Les vecteurs propres associés a la valeur propre 2 sont donc les vecteurs

ch(i), c € Cyp.

— La matrice S( _ll i ) est telle que ST1AS = ( 8 (2) > .
110
5.4) Soit la matrice A= 0 1 0
0 0 1

— Le polynome caractéristique de A est
1—A 1 0
det(A—X1)=| 0 1-X 0 [=(1-=)>
0 0 1—A

La matrice A admet donc la valeur propre triple 1.
— Cherchons les vecteurs propres associés a cette valeur propre 1 c’est-a-dire les vecteurs non nuls

x
X=|y | telsque (A—1)X =0.0na
z
0 1 0 x 1 0
A-1)X=10 0 0 y |=0y=0X=z2| 0 |+2| O
0 0 0 z 0 1

Les vecteurs propres associés a cette valeur propre 1 sont donc les vecteurs

1 0
X=c 0 | +c2| O |, ec1,c0 € C non simultanément nuls.
0 1
Trois vecteurs propres sont donc toujours linéairement dépendants; la matrice A n’est donc pas
diagonalisable.
0 -1 1
5.5) Considérons la matrice A= 3 2 -3
1 -1 0
— Le polynéme caractéristique de A est
-2 -1 1 —-A -1 1
det(A—-X1)=| 3 2-X 3| = 32— -3 si on remplace L3 par Lg — Ly
1 -1 =X 1+ A 0 —1-A
-2 -1 1-X
= 3 2—A 0 si on remplace C3 par C3 + Cy
1+ A 0 0
— (1-)) 3 2—A en développant selon la
o 1+ A 0 troisitme colonne

= 1-XNA-2)(A+1)

Les valeurs propres de A sont donc —1, 1 et 2; puisque ces valeurs propres sont simples, la matrice
est diagonalisable.
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— Cherchons les vecteurs propres associés a la valeur propre —1 c’est-a-dire les vecteurs non nuls

x
X=| y | telsque (A+1)X = 0. On a successivement
z
1 -1 1 T
(A+1)X=|( 3 3 -3 y | =0 = {x_y“_o (L
1 -1 1 z z+y—z=0 (2)
- 20 =0 (1) +(2)
2y—2:=0 (2)-(1)
N z=0
Y=z
0
& X=y| 1
1

— Cherchons les vecteurs propres associés a la valeur propre 1 c’est-a-dire les vecteurs non nuls

x
X =1 y | tels que (A —1)X = 0. On a successivement
z

-1 -1 1 x —z—y+z=0 (1)
(A-1)X = 3 1 -3 y | =0 & 3x+y—32=0 (2)
1 -1 -1 z x—y—2z=0 (3)

dr—42=0 (2)+(3)

& (y=0 (1 +3)

x—y—2z=0 (3)
T=z 1
& { SX=z| 0
0 1

Les vecteurs propres associés a la valeur propre 1 sont donc les vecteurs

X=c| O |, c € Cy.

— Cherchons les vecteurs propres associés a la valeur propre 2 c’est-a-dire les vecteurs non nuls
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x
X=| y | telsque (A—21)X =0. On a successivement
z
-2 -1 1 T —2r—y+2z=0
A-21)X=|( 3 0 -3 y | =0 & { 32-3:=0
1 -1 =2 z r—y—2z=0
- {—2x—y+z—0
r—2=0
r=z
. {
& X = —1
1

Les vecteurs propres associés a la valeur propre 2 sont donc les vecteurs

1
X=c| -1 |, c € Cy.
1
01 1 -1 0 0
— Lamatrice S=|[ 1 0 —1 | esttelle que ST'AS = 0 1 0
1 1 1 0 0 2

Exercice 6

0

0 0
- Un complexe comme somme et produit de complexes.

- Faux : si A est la matrice nulle on a ’égalité pour toute matrice B.
- Faux : B* = ¢A.

- Vrai : le déterminant de M est non nul.

- Vrai : 'addition des matrices est une opération commutative.

- Faux : le produit des matrices n’est pas commutatif.

0 -1
1 0
- Faux : le déterminant d’une matrice carrée est égal au produit de ses valeurs propres.
- Faux : si un vecteur est un vecteur propre d’une valeur propre, son opposé ’est aussi.

- Faux : le carré de A = ( ) est la matrice nulle mais A n’est pas une matrice nulle.

- Faux : les valeurs propres de A = < ) sont égales a —i et i.

REMARQUES IMPORTANTES

Lors de l'inversion et de la diagonalisation de matrices, on vérifie aisément que la solution trouvée est

correcte.

— Quand on a déterminé la matrice inverse d’une matrice donnée, on vérifie que le résultat est correct
en effectuant le produit de la matrice de départ par la matrice trouvée. On doit obtenir la matrice
identité.

— Quand on a déterminé une forme diagonale A de la matrice de départ A et une matrice S qui y
conduit, pour savoir si le résultat est correct, on doit vérifier que S~ AS = A, ce qui est équivalent
a la vérification de ’égalité (bien plus simple!) AS = SA.

3.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

-2 =2 . .
1A = 1 0 ;o CF = ( 2 ;_ ! _2.41 ) ; A+ B impossible car matrices de formats différents;

—1 1
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~ -1 3 8 -2t 242 —4 4i 2%
A+ B= —1 2 ;o AA* = 2 1 1 i AB = —1 0 ? ;
-2 244 2—-2i —i 2 147 2 244

(-1 142 (242 6 144,
BA—(15¢ ~1+i ) CB_<1+42' ~2i 152')’

C A impossible car le nombre de colonnes de C n’est pas égal au nombre de lignes de A.

Exercice 2

—7,-6,0.

Exercice 3

z(z — 3).
Exercice 4
. -1
(_21 _Z.>et 10 -1

! 1 -1 -1

Exercice 5

Premiére matrice : valeurs propres simples 0 et 3 donc matrice diagonalisable.

Vecteurs propres relatifs a la valeur propre 0 : ¢ _11 , ¢ € Cp.
Vecteurs propres relatifs a la valeur propre 3 : ¢ é , ¢ € Cy.

. (-1 1 . 1 (0 0
LamatrlceS—( 1 2>ebttelleque5 AS-(O 3>.

Deuxiéme matrice : valeur propre double 1.

Vecteurs propres relatifs a la valeur propre 1 : ¢ ( ? ) , ¢ € Cy donc matrice non diagonalisable.

Troisieme matrice : valeurs propres simples 0 et 2 donc matrice diagonalisable.

Vecteurs propres relatifs a la valeur propre 0 : ¢ ( _ll ) , ¢ € Cy.

Vecteurs propres relatifs a la valeur propre 2 : ¢ ! ) , c€Cp.

1
(A

— 0 0
. _ —140_
La matrice S = ( 11 ) est telle que ST AS = ( 0 2 > .

Quatriéme matrice : valeur propre triple 1.

1 0
Vecteurs propres relatifs a la valeur propre 1 : ¢ | 0 | +c2 | 0 |, ¢1,c2 € Cnon simultanément nuls;
0 1

la matrice n’est donc pas diagonalisable.

Cinquiéme matrice : valeurs propres —2 (simple) et 7 (double).

1 0

Vecteurs propres relatifs a la valeur propre 7: ¢y | —2 | +c2| 2 |, c¢1,c2 € C non simultanément
0 1

nuls.
2

Vecteurs propres relatifs & la valeur propre —2 : ¢ 1 , ¢ € Cy.
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1 0 2 7 0 0
La matrice S=| -2 2 1 est telle que STPAS=| 0 7 0
0 1 -2 0 0 -2

Exercice 6
0 1
0 0
- Vrai : dans ce cas M admet un inverse.
- Vrai : addition des matrices est une opération commutative.
- Faux : le produit des matrices n’est pas commutatif.

0 -1 . <
1 0 ) sont égales a —1i et i.
- Faux : le déterminant d’une matrice carrée est égal au produit de ses valeurs propres.
- Faux : si un vecteur est un vecteur propre d’une valeur propre, son opposé l'est aussi.

0 —
1 0
- Vrai : si det(M — \g 1) = 0 alors det(M — Ay 1) = 0.

- Vrai : le déterminant d’'une matrice carrée est égal au déterminant de sa transposée.

- Faux : le carré de A = ( ) est la matrice nulle mais A n’est pas une matrice nulle.

- Faux : les valeurs propres de A = <

- Faux : les valeurs propres de A = < ) sont égales a —i et ¢ mais 0 n’est pas valeur propre de A.

3.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

2 0 —i -1 .
A= 20 —i (iB*=| 0 -2 A+B:<1.2Z 2 3)
. . . . 1
-2t 1+1 i —1—1

A+ B : impossible car A et B ne sont pas de méme format.

. 12 —4-2
AA_(4+2¢ 3 )

AB : impossible car le nombre de colonnes de A (3) differe du nombre de lignes de B (2).
BA : impossible car le nombre de colonnes de B (3) differe du nombre de lignes de A (2).

(1 6 2+6i
CB_(1+4¢ ~2i 15i)

Exercice 2

Toute matrice commute avec ( (2) g )

o

Toute matrice diagonale commute avec (2) 1 >
. 2
Toute matrice du type < Ccl 2 ) commute avec ( 1 0 >

Exercice 3

Le premier déterminant est égal a 5+ 7i et le second a g.

Exercice 4

Le premier déterminant se factorise sous la forme (3 — z)(x 4 2) et le second sous la forme

1+iV7 1—iV/7




3.4. LISTE 2004/2005 95

Exercice 5

Les matrices inverses sont

(0 2) (o =)

N = W
N N
(G288 VN e

Exercice 6

— Matrice ( ; ; ) : valeurs propres : 0 et 4.

Vecteurs propres relatifsa A =0: ¢ , ¢ € Cy.

-1
1
Vecteurs propres relatifsa A =4: ¢ < 1 ) , ¢ € Cy.

Cette matrice A est diagonalisable; si S = < _11 } >, onaS1AS = < 8 2 )

— Matrice ( ; (2) ) : valeur propre : 2 (double).

Vecteurs propres relatifsa A =2: ¢ , ¢ € Cy.

0
1
Cette matrice n’est pas diagonalisable car elle ne possede pas deux vecteurs linéairement indépendants.

— Matrice ( g (2) ) : valeur propre : 2 (double).

Vecteurs propres relatifs a A =2: ¢ < (1) ) +c ( 0

1 ) avec ¢, ¢’ € C non simultanément nuls.

Cette matrice A est déja diagonale.

— Matrice ( 1 —1&—2 1 —f ! > : valeurs propres : —i et 2 + 4.
Vecteurs propres relatifs a A = —i: ¢ _11 , ¢ € Cy.
Vecteurs propres relatifsa A =247 : ¢ 1 , ¢ € Cy.
Cette matrice A est diagonalisable; si S = ( L1 ) onaST1AS = ( —i 0 , )
' -1 1) 0 241
110
— Matrice [ 0 1 0 | : valeur propre : 1 (triple).
0 01
1 0
Vecteurs propres relatifsa A=1:c| 0 | +c | 0 | avec ¢, € C non simultanément nuls.
0 1
Cette matrice n’est pas diagonalisable car elle ne possede pas trois vecteurs propres linéairement
indépendants.
1 -1 -1
— Matrice [ =1 1 =1 | : valeurs propres : —1 (simple) et 2 (double).
-1 -1 1
1 1
Vecteurs propres relatifsa A=2:¢c| -1 | +¢ 0 avec ¢, ¢’ € C non simultanément nuls.
0 -1
1
Vecteurs propres relatifsa A=—1:¢c| 1 |,ce€ Cg.
1

1 1 2 0
Cette matrice A est diagonalisable;siS=|[ -1 0 1 |,ona S '4S=[ 0 2 0
1 00



o6 CHAPITRE 3. CALCUL MATRICIEL

Exercice 7

0

0 1
- Vrai : dans ce cas M admet un inverse.

- Faux : si A et B sont de format m x p alors A + B est de format m X p mais le produit est impossible
sauf si m = p.

- Faux : le produit matriciel n’est pas commutatif.

- Faux : le déterminant de la matrice doit étre non nul or il est égal au produit des valeurs propres de la
matrice.

- Faux : un vecteur propre et son opposé (vecteur propre de la meme valeur propre) est le vecteur nul
jamais vecteur propre.

- Faux : cf ci-dessus.

- Vrai : propriété (cf théorie).

- Faux : le carré de A = ( ) est la matrice A mais A n’est ni la matrice nulle ni ’identité.



Chapitre 4

Listes d’exercices 2025 - 2026 :
corrigé

LISTE 1 : FONCTIONS ELEMENTAIRES

I. Eléments de base relatifs aux fonctions‘

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous.
Si la fonction est composée, mentionner de quelles fonctions élémentaires elle est la

composée
fe) = g P =hiat =243, i) =T ) = Y=
fs(x) =In(e” — 1), fe(z)=1In (\/ 1422 — ar) . fr(z) = arcsin(z? — 1)
Fonction dom(f)
firz—=1/2—|z+1]) R\ {-3, 1}
fo: x—=In(—2% -2z +3) | ]—3,1]
fa:z—=(x-1)/(x—2)|]—o0,1]U]2,400]
fir =V —1/V/z =2 |]2,+o0]
fs: z—In(e® —1) 10, +o0]
f6: mHln(\/lerQ—m) R
fr: x> arcsin(z? — 1) [—v2,V2]

Si la fonction donnée est égale a f o g alors on a

- pour fo: x + In(—22? — 22 + 3) on a les fonctions g : 2+ —x2 — 2z + 3 et f:y — In(y)

- pour f3:x+— /(x —1)(xz —2) on a les fonctions g : x — (x —1)/(x —2) et f:y— /Y

- pour fr:x + arcsin(a? — 1) on a les fonctions g : # +— 22 — 1 et f : y — arcsin(y)

57
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2. Déterminer le domaine de définition des fonctions données explicitement ci-dessous
et les représenter graphiquement (uniquement en se servant des symétries et des

représentations graphiques de In et de ’exponentielle).

A =tuo), foe) = (). A =1~ i) = (1)

fs(a) = —exp(x),  fo(r) = exp(z +1),  fr(z) = exp(z) +1

Le domaine de définition de la premiere fonction est | — oo, 0[; celui de la deuxiéme est Ry et celui

de la troisieme et de la quatrieme est ]0, +o0].
Le domaine de définition des 3 fonctions exponentielles est R.

vy y = In(z) Yi
///// T~
y =In(—x)
% : N
/ '\\1
“‘/ \T
|
Y
3 i
aY LY
o 7 2
4 7‘2\ — 2 ng 1\ 1
\\1 X 1\\ y=|-1In(z)] ; ——
} \ - -1 1 3 4 X
3\ e -1y
3( 9 y=In(1/x)

Y& | v
// y = exp(z) s,e" 5
2 / 5 /
~ ¢ y=ewm@) 1
o = 2 4y, ,"ﬁ 3t // /
. X 3 / / /
/ / f /
o\ (@) y=exp(z+1) Jt/ y=(exp(z))+1 ~
Yy = —explx / / I -
S ymew@ |
_ ;,'/J— — Y 4 3 2 1 1 {Xv
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‘II. Manipulation des fonctions élémentaires‘

1. Simplifier les expressions suivantes au maximum

(a) In (cos(m/3))+In ((sin(47r/3)2), (b) tan (In(e*7/2)), (c) exp(3In(2e)), (d) arcsin (-*f)

() arcsin (sin (‘?)) (f) arctan (‘f) (g) tan (arctan (g)) (h) arctan <tan <47”>)

Les expressions sont définies et valent respectivement (1) In(3) —31In(2), (2) —tan(In(2)), (3)

8e3
™ ™ ™ ™ 3T

(4) _57 (5) gv (6) 57 (7) 57 (8) 7

‘III. Limites des valeurs des fonctions‘

1. Se rappeler les limites relatives aux fonctions élémentaires et en déduire rapidement
les quelques limites suivantes

(a) lim exp (i) (b) lim

1 (0 1 . 1
z—0 2 —o0 111(12)’ c wl)nlq+ arctan 1)

La limite (a) n’existe pas, la limite (b) vaut 0T et la limite (c) vaut (z)

2. Calculer (si possible) les limites suivantes, sans appliquer le théoréme de I’Hospital

. 1 . 2 . V 1 =+ ,Iﬁ
. cotan (x) tan () . ox? -1
d) 1 _— 1 1 _—
(d) o0+ sin(3x) () 250 sin(2x) (f) R |1 — x|
. —22% + 5z . ) .
(0) Jim T ) i (a4 2) W) ()l o+ 7]

Toutes ces limites peuvent étre envisagées et sont respectivement égales a
Ea)) ©  (b)—oo () (-1)7 (e () (1/2)F  (B)(=2)T (9 (=2)7  (b)0F
i) 00

‘IV. Continuité et dérivation‘

1. On donne des fonctions par les expressions explicites suivantes. En déterminer le
domaine de définition, de continuité, de dérivabilité et en calculer la dérivée premiere.

fi(z) = V322 +1 fo(x) = 21+ - fa(z) = m fa(x) = arctan(cos(z))
f5(x) = +/sin(2x) fe(x) = sin(cotan(z)) fr(x) = In(a?) fa(x) =In(2® + 2 —2)

Si on note A le domaine de définition des fonctions, B leur domaine de continuité et C' leur do-
maine de dérivabilité, on a les résultats suivants
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Fonction A=B C Dérivée
fi(z) = V322 +1 R R 55(322”
fala) = < ]~ 2, oo ] -2, +ool T
f3(z) = m R\ {-1} R\{-1} ﬁ
fa(z) = arctan(cos(z)) R R HZ‘%
fs(x) = \/sin(27) lgi[kw,g—+kw} igi}kw,g—%kw[ CZ?ﬁ;;)
fo(x) = sin(cotan(z)) R\ {kr:keZ} R\ {kr: ke Z} W
f2(z) = In(z?) Ro Ro %

fio(z) =In(z? + 2 —2) | ] — o0, —2[ U ]1,+00[ | ] — o0, —2[ U ]1, +o0] %

2. On donne la fonction g dérivable sur | — 1, 1] et la fonction f :t— f(t) = g(In(¢)).

a) Déterminer le domaine de dérivabilité de f.
b) Calculer la dérivée de f en fonction de la dérivée de g.
c) Mémes questions si g est dérivable sur ]0,3] et si f est la fonction y — f(y) =

g(Vy? —1).

a) Le plus grand ouvert dans lequel f est dérivable est |1/e, e].
b) Sur son domaine de dérivabilité, on a D f(t) = Dyg(u)|y=in@) < 1/t.
¢) Le domaine de dérivabilité de f est | — /10, —1[ U ]1,/10[; dans cet ensemble, sa dérivée vaut

Df(y) = Dug(u)|u:\/y271 x -

VP -1

. Soit F :t — F(t) = f(z(t)) avec z(3) =2, Dz(3) =5 et (D, f)(2) = —4. En supposant F'

dérivable en 3, que vaut (DF)(3)?

La dérivée de F' en 4 vaut -20.

‘V. Théoréme de l’Hospital‘

1. Calculer les limites suivantes (dans chaque cas, si ce n’est pas possible ou si elle

n’existe pas, en donner la raison)

(1) lim cos(2z) (2) lim zln <2 + 1) (3) lim aresin(2z)
z—0+t T+ 1 x—+o00 T z—0 T

. . In(1/]z|) . 3x2 +1
4) lim V23 In($ 2O/ l2]) 341
(4) wﬂ%ﬂ 2% In(/z) (5) i Va2 (6) 5 T arctan(z2 + 2)

. . In(z—2) . In(a® — 3z —4)

— 2 p—
SR RS S T
. . 1+ cos(z) . tan(x) — sin(z)
N 2
(10) Jim_(n(f2 =)~ @) (1) Jim L (12) lim P22
2 2

(13) lim - (14) lim ye™¥ (15) lim exp(z)

u—r~00 63'“ Yy——00 T—+00 eXp(Jc2)
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Fonction dom(f) Limite

(1) f(z) = cos(2z)/(z + 1) RA{-1} Jlim cos(2z)/(z+1) =17

(2) f(x) =zIn (24 1/z) ]—00, =11 U0, +00[ Jim _zln (2+1/2) = +o0

(3) f(x) = arcsin(2x)/x [—3,0[ U 0, 3] lim arcsin(2x)/x = 2

(4) f(x) = Va3 (V) 10, +00] Jim Va3 In(Yr) =0

(5) f(z) =In(1/|z])/V22 Ro im_In(1/J])/va® =0

(6) f(z) = (3z* + 1)/ arctan(z* + 2) R lim (32 4 1)/ arctan(z? + 2) = +oo
(7) f(z) = (1 —t)In(t* — 1) ] =00, —1[ U1, +oo[ tl_l}%(l—t)ln(t -1)=0

(8) f(x) = In(z — 2)/|2 — x| 12, +00[ lim In(z — 2)/[2 2] pas de sens
(9) f(x) =In(z* =3z —4)/(x —4) | ] — o0, —1[ U J4,4+o0] IEIEwln(xg—Sm—4)/(x—4):0
(10) f(2) = (In(|2 — @[) — In(=?)) Ro\ {2} Jim (In(|2 = 2f) = In(2%)) = —o0
(11) f(x) = (1 + cos(z))/ sin(x) R\{km:keZ} | lim(1+cos(x))/sin(z) =0

(12) f(x) = (tan(z) — sin(z)) /2> Ro\ {5 +km:k € Z} | lim (tan(x) —sin())/a” = %

(13) f(x) = u?/e3" R m u?/e3t = 07"

(1) fly) =ye™ R ygrnmw# =0"

(15 ) f(x) = exp(x)// exp(z?) R dim exp(x)//exp(a?) = 0%

La limite lim In(z—2)/|2—2z| n’a pas de sens car on peut trouver un intervalle ouvert comprenant
r—2~

2 dont l'intersection avec dom(f)N | —

00, 2| est vide.
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LISTE 2 : DECOMPOSITION DE FRACTIONS RATIONNELLES
ET APPROXIMATIONS POLYNOMIALES

‘I. Décomposition en fractions simples‘

1. Décomposer les fractions rationnelles suivantes en fractions rationnelles simples a
coefficients réels.

(@) ﬁm’ ®) m’ (©) x(z? —ix+4), (d) ;:32311
© Hes (N s (6) s
On a les décompositions suivantes :
(a)ﬁ,xeR\{Z} (b)i(xi3+xi1>,xeR\{l, 3)
@3 (3- i+ g ) veRME @ e 0 rer\ ()
(9) JUQL—H’ reR

‘ I1I. Approximations polynomiales ‘

1. Dans chacun des cas suivants, déterminer ’approximation polynomiale a 1’ordre n en

xo pour la fonction f;. Représenter fo ( —-ou f3 ou fs— ) et ses approximations.
Pour f5,

a) donner une expression explicite du reste de ces approximations.

b) indiquer ou se situe le graphique de f; au voisinage de 0 par rapport a celui de
chacune des approximations en tenant compte du point précédent.

f2(l): V1+9I7 x():O,n:(),l,Q
fa(x) = arctan(z), zo =0 (resp. zg =1),n=0,1,2
fo(x) =sin(z), 20 =1,n=10,1,2

fi(x) = cos(x) 3*, 29 =0,n=0,1,2,3
fa(x)=1/(1—-2z), 2o =0,n=0,1,2
fs(x) = cos?(x), 20 =0, n=0,1,2

Fonction | Ordre 0 | Ordre 1 Ordre 2
f 1 1+ 32 143z +422, z€R
9z 9r  81z?
1 14+ — 14— - — R
f2 + 2 + 2 ] y T €
f3 1 1422 1+2z+42?, z €R
fa(zo=0)]0 x z, v €R
T T x-—1 T x—1 (x-1)?
falwo=1) 1 7 1t 172 g 0 7C
f5 1 1 1—-2%, z€R
fe sin(1) sin(1) + cos(1)(x — 1) | sin(1) + cos(1)(x — 1) —sin(1)(z — 1)?/2, x €R
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L’approximation & I'ordre 3 en 0 de f; est donnée par P(x) = 1 + 3z + 422 + 323, » € R.

a) Pour f5, si on note R, le reste de 'approximation polynomiale de f & 'ordre n en 0, alors pour

tout = € R, il existe ug, u1, ug compris entre 0 et x tels que
2
20

Ry(z) = -2 cos(2u1).z = — cos(2uy )z?

Ro(z) = —sin(2up)x,

et
3 2 . 2 3
Ro(a) = 4sin(2u). 27 = %

b) Lorsque x est au voisinage de 0, Ro(x) et Ri(x) sont négatifs tandis que Ra(x) est positif. Des
lors, le graphique de la fonction est situé en dessous de celui de Py et de celui de P; mais au-dessus

de celui de P.

Dans les graphiques suivants, notons P; ’approximation polynomiale a 1’ordre 1.

h f2 Py Yy B
Y , S Y
3t \ [ /
\ | A _
/ “ Py=P
/ [ ’
// [
2 |/ «
/ 20] | 05
~ f5
4 \ PO
-15 -+1.0 -05 05 10 15
P, X
| Py \
; S sl
"I ‘ ‘ \ Py
-1 1 2 3~
' x f3 - o o
e | ; >
X

2. Déterminer ’approximation polynomiale & 1’ordre 3 en 0 de la fonction cos et en
estimer le reste. Représenter la fonction et cette approximation dans le méme repére

orthonormé.
L’approximation polynomiale & 'ordre 3 en 0 est donnée par P(z) =1— %, z € R et le reste vaut
4
cos(u x
Rs(x) = 4(' ):174, 2 € R avec u strictement compris entre 0 et . Dés lors, on a  |R3(x)| < 2
! Y
05
-2 -1 1 2 3(
/ -osf \
/ \
-10f P3\\ cos

3. La force de marée agissant sur une masse m peut étre définie comme la différence entre
P’attraction de la Lune sur cette masse située a la surface de la Terre et ’attraction de
la Lune sur cette masse en supposant qu’elle est au centre de la Terre. Si on désigne
par R le rayon terrestre, d la distance! Terre-Lune, G la constante de gravité, M la

masse de la Lune, on peut alors écrire
GMm B GMm
(d— R)? d?

F =

1. entre les centres respectifs
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en un point de la surface terrestre situé sur la droite joignant le centre de la Terre
et le centre de la Lune. En tenant compte du fait que le rapport R/d est petit, une
expression approximative (simplifiée) de la force F' est donnée par

2GMmR

Approx __
F ===

Expliquer pourquoi une approximation de F est donnée par 1’expression précédente.
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LiSTE 3 : CALCUL INTEGRAL A UNE VARIABLE
SUR UN ENSEMBLE BORNE FERME ET CALCUL D’AIRES

‘I. Calcul d’intégrales sur un ensemble borné fermé‘

1. Soit a > 0. Démontrer et interpréter graphiquement que

(a) si f est une fonction continue et paire sur [—a,a], alors flx)dx = 2/ f(x)dx.
—a 0

a
(b) si f est une fonction continue et impaire sur [—a, a], alors f(z)dz = 0.
—a

2. Calculer les intégrales suivantes (si c’est possible)

(1) /1 (2% + 22) da (2) /1 ze® dx (3) /0 ze ™ dx

—2 -1 -1

3 /3 w/3
(4) / Js+Zar () / sin?(z) dz (6) / cotan?(z) dz
1/2 2 m/4 m/4

(7) / zsin®(z) dx (8) /Oﬂ/2 cos(x) sin®(z) dx 9) /4 vl dx

0 1 r+2
! 25 Vi
10 arctan(z) dx 11 — dx 12 dz
10) [ arctan(e) de 1) [ o 1) 7
1 1 9
(1) / (2% +22) dz =0 (2) / xe® dx = —
-2 -1 €
0 3
2 1—e [z 1313
= 4 2 odr = —
(3) /_1376 dx 50 (4) /1/2 3+ 5 dz = 9v2 5
/3 _ /3 12 —44/3 —
(5) / sin?(z) dr = L\/m (6) / cotan®(x) dx = ¢
/4 24 /4 12
™ 2 /2 1
(7) / rsin®(z) do = T (8) / cos(z) sin?(z) dr = -
0 4 0 3
4 1
z+1
9 dr =5—1In(6 10 t dr =20
()/_1m+2 x n(6) ( )/_fxr(:&n(x) x
2v3 V3
1 n 1 (V3
(11) /_2 e dr = 51 (12) /0 5 dr = arcsin (3)

3. En cartographie, sur une carte de Mercator, ’ordonnée d’un point proche de I’équateur
et dont la latitude est ¢ € [0, 5[, est donnée par

y(p) = R./O(/J 70081(@ du.

™

Montrer que
ylp)=R In (’tan (g + Z) D .
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II. Calcul d’aires

1. Calculer ’aire de la partie du plan dont une description analytique est la suivante

5

{(x,y) ze BA ,yERet cos(z) <y < sin(2x)}.

Donner aussi une représentation graphique de cet ensemble.

¥y
10} |
05% y = cos(x)
: 1 2 4 5" x
_O'SE v= Sin(mj)L’auire hachurée vaut /2 + i.
-10} T = % - v %T

2. Calculer l’aire de la partie du plan dont une description analytique est la suivante
{(z,9):xe€[-2,1], ye[z—1,1 —xQ]}.

Donner aussi une représentation graphique de cet ensemble.

y=xz—1

L’aire hachurée vaut %.

3. On considére ’ensemble {(z,y) € R? : 2 <y < 2z, y > 2?}. Donner une représentation
graphique de cet ensemble en le hachurant et calculer 1’aire de cette région du plan.
L’aire de la région hachurée vaut 7/6.
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LISTE 4 : CALCUL INTEGRAL A UNE VARIABLE SUR UN
ENSEMBLE NON BORNE FERME ET NOMBRES COMPLEXES

‘I. Calcul d’intégrales sur un ensemble non borné fermé‘

1. Calculer les intégrales suivantes (si c’est possible)

2r+1

—— dx
0o VT
0
1
4 —d
()/_0093224—4 .
1 x2+2x+5 v

+oo
(10) / e
0

(1)

x1n(|z|)) dx

(3) /61
(©) /;oo Fp rant

/3
(9) / cos(2x) €” dx

— 00

+oo 1
12 —_
(12) /4 22 —4

dx

dx

/3
(9) / cos(2x) €” dx

10

(1) /02 ‘”\2?1 da;:&f 2) /Olln(xQ) dr = —2

® [ (el de = S O =

(5) /;0099521_4“:1121“(2) (6) /;00362_;“1(19;—1

0 /1+OO.%'2+;CC+5dx:g () /:xz—l—;m—?)dxﬁ
e5(2v3 1)

(11) /o In(z) de = -1

Pour l'intégrale (8), la fonction n’est pas intégrable en —3 et pour l'intégrale (10), elle n’est pas intégrable

en +o0.

I1. Les nombres complexes‘

1. Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des
complexes ci-dessous. Représenter ces complexes dans le plan muni d’un repére
orthonormé (« X = axe réel » et <« Y= axe imaginaire »)

i1,

(=i + 1) (=1 — 2i),
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z Rz | Sz zZ |z
2n=i+1 1 1 1—1 V2
zg=(—i+1)(-1-2i)| -3 | =1 | -3+ V10
23 =1/(—i+1) /2 [ 1/2] (1—4)/2 |V2/2
za=i"/(i—1) —1/2 | 1/2 | (=1 —14)/2 | V2/2
25 = (1 —1i)? 0 | -2 2i 2
‘%z
+1 e <1
Z4® ez3
} } } %1 } V?Rz
R i
22
- 25

2. Déterminer la forme trigonométrique des complexes suivants et les représenter dans
le plan muni d’un repére orthonormé (« X = axe réel » et <« Y= axe imaginaire »)

—i,

On a

i1,

1 ,
5(\/§—’L).

, 3m (37 1 ™, (T
zlzcos(2>+zmn<2), 22f2+1f\/§(cos(4)+zsm(4))
1 11 11
zg = 5(\/3— }) = cos (67T) + isin <67T> .

Z1 @

Ny
1 oz
}
1 Rz
[ ] 2,’3

3. On suppose que a est un nombre réel. Déterminer les partie réelle, imaginaire, le
conjugué et le module de chacun des complexes ci-dessous. Représenter ces complexes
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dans le plan muni d’un repére orthonormé (<« X = axe réel » et < Y= axe imaginaire »)
en supposant que « appartient a ’intervalle [7/2, 7|

cos(a) — i sin(a),

1

cos(a) — isin(a)

, (cos(1) +isin(1))(cos(a) —isin(a)),

sin(2a)) — i cos(2a).

On a
z Rz Sz z 2|
21 = cos(a) — isin(a) cos(a) | —sin(a) cos(a) + i sin(a) 1
2o = 1/(cos(a) — isin(a)) cos(a) sin(a) cos(a) — isin(a) 1
23 = (cos(1) + isin(1))(cos(a) — isin(a)) | cos(1 — @) | sin(1 — a) | cos(1 — a) —isin(1 — @) | 1
24 = sin(2a) — i cos(2a) sin(2a) | —cos(2a) | sin(2a) + i cos(2a) 1

f

Sz
1
/22'/‘0\
Z4

[
\

)
/1 Rz

4. Résoudre les équations suivantes et représenter les solutions dans le plan muni d’un
repére orthonormé (<« X = axe réel » et < Y= axe imaginaire >)

(1) 22+8=0 (2)27z°+1=0

(3) 22 +2 =iz

L’ensemble des solutions de 'équation (1) est S = {—2v/2 i,2v/2 i}.
L’ensemble des solutions de I’équation (2) est

-

11

36

(1+ix/§),

| =

(11\/?3)}

L’ensemble des solutions de I’équation (3) est S = {—i, 2i}.
L’ensemble des solutions de I'équation (4) est S = {1 —4,i}.
L’ensemble des solutions de 1'équation (5) est S = {1 — 4, —i}.

(4) 22— 2+1+i=0 (5) 22— (1—-2i)z =1+
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LISTE 5 : EQUATIONS DIFFERENTIELLES (1)

‘ I. Quelques manipulations ‘

1. Si ’équation différentielle (D;y)? = 2y admet 2 solutions distinctes non nulles, peut-
on affirmer qu’une combinaison linéaire de ces solutions est encore solution de cette
équation ?

Cette équation n’est pas linéaire car une combinaison linéaire de solutions de cette équation n’est
pas solution de I’équation. On a par exemple que la fonction ¢ + t2/2 est solution alors que la
fonction ¢ — 2 ne I’est pas.

(Dey)? = 12(y + 1)
2. Montrer que la fonction g(t) = 3t> —6t+2, t € R, vérifie le systéme { y(0) =2
y(2) =2
On a ¢g(0) = 2 et g(2) = 2 ainsi que Dg(t) = 6t — 6. En remplagant Dy et y respectivement par
Dg et g dans le systeme, les trois équations sont vérifiées.

3. Montrer que la fonction g¢(t) = cotan(t) — 1/sin(t), t € ]0,7/2[, vérifie I’équation
2 Dy +9? = —1.

On a Dg(t) = (—1+cos(t))/sin?(t) et en remplagant Dy et y respectivement par Dg(t) et g dans
I’équation donnée, celle-ci est vérifiée.

4. Montrer que la fonction v : z — C; e€2*, z € R, C; et C, étant des constantes complexes

arbitraires, vérifie ’équation différentielle v(z)D?v(x) — (Dv(x))? = 0.

La fonction u est infiniment dérivable sur R et on a Du(x) = C; Cq 2% et D?u(x) = C (Cy)? e“27.
En remplacant dans ’équation donnée, on constate que cette derniere est vérifiée.

5. Montrer que la fonction z + tan(x)+1/ cos(z), = € ]0,7/2[, vérifie ’équation 2D f— f% = 1.
La fonction donnée est dérivable sur |0, 7/2[ et on a

1 ) 1 sin(z)

cos(x) )  cos?(x) = cos?(z)

D(tan(x)Jr ,xe}o,g{.

Des lors, il est facile de montrer que, pour tout x € ]0,7/2[, on a 1’égalité.

II. Résolution d’équations diﬁ'érentielles‘

1. Résoudre les équations différentielles suivantes, en spécifiant dans quel intervalle on

travaille
1)4Df +2if =0 2) D*f =2f 3) D?f =0

4) D?°f+Df -2f=0 5)4D?’f—f=0 6) D*f+f=0
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Les solutions des équations ci-dessus sont les fonctions suivantes

1) f(x) = Ce /2 2 € R ou C est une constante arbitraire complexe.

2) f(t)=C e V24 O, eﬁt, teR ou Cj et C5 sont des constantes arbitraires complexes.
3) f(u) =Ciu+Cy, u€R o Cj et Cy sont des constantes arbitraires complexes.

4) f(x) =Cre 2+ Cye®, x €R ol Oy et Oy sont des constantes arbitraires complexes.

5) f(z) = Cre /2 + O, e®/2 € R ol C; et Cy sont des constantes arbitraires complexes.
6) f(x) =Cre @+ Cye®™®, x €R ou C) et Cy sont des constantes arbitraires complexes.

. Résoudre les équations différentielles suivantes, en spécifiant dans quel intervalle on
travaille (pour ’équation 3, en donner aussi les solutions réelles)

1) D*f(z) + Df(x) — 2f(z) = €® + 42%e** + 1 2) 4D*f(x) — f(x) = cos?(x) — 1/2

3) D?f(z) + f(z) = ze®® 4) D? f(z) + 2D f(z) + f(z) = (2 + cos(x))e™™
5 D2f(z) — f(z) = 1+ 22, 6) 9D2f(z) — Df(z) = 1

7) D2f(z) — Af(z) = 1 + €, 8) D2f(x) + 4f(x) = sin(4z)

9) Df(x) — 2f(x) = we®, 10) 2Df () + 3f(z) = 22 + 1

Les solutions des équations ci-dessus sont les fonctions suivantes
1) f(z) =Cre ® 4+ (Co+x/3)e" + (2° —5x/2+21/8) e** —1/2, z €R ol C; et Cs sont des
constantes arbitraires complexes.

2) f(x)=Cre % +Cye? —cos(2z)/34, €R ot C) et Cy sont des constantes arbitraires
complexes.

3) f(z) =Cre ™+ Cye™ + (x/5 —4/25)e**, 2 € R ot C et Cy sont des constantes arbitraires
complexes.
Les solutions réelles sont données par

f(z) = O} cos(z) + CY sin(z) + (x/5 —4/25) e**, z € R
o C] et C} sont des constantes arbitraires réelles.

4) f(x) = (C1x + Cy + 22 — cos(x))e™®, x € R ot C; et Cy sont des constantes arbitraires
complexes.

5) f(z) =cr1e @ +cpe® — 22 — 3, x €R ol ¢, ¢y sont des constantes complexes arbitraires.

6) f(z)=c1 + c2€®/9 — ., x € R oll ¢1, ¢o sont des constantes complexes arbitraires.

=c1e % 4 (cg +x/4) €* —1/4, x € Rolt ¢y, co sont des constantes complexes arbitraires.

f(x)
f(z) = c1e 27 4 ¢y e?™ —sin(4x) /12, = € Roil ¢1, co sont des constantes complexes arbitraires.
f

10) f(z) = Ce /2 4 42 /3 — 42:/9 + 17/27, x € R ol C est une constante complexe arbitraire.
. Résoudre le systéme suivant, en spécifiant dans quel intervalle on travaille

4D*f(z) + f(z) = 2® + 2 + 2
f(0)=0
Df(0) =2.
La solution du systéme est la fonction
x

f(z) = 6cos (g) + 25sin (5) +a2*4+2-6, zE€R.
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4. Résoudre l’équation différentielle suivante en précisant l’intervalle sur lequel on
travaille.
2D%*f(z) + Df(z) = 2z

Déterminer ensuite la solution qui vaut 1 en 1 et dont la dérivée premieére vaut 0
en 1.

Les solutions de cette équation sont les fonctions
f(x) = Cy+Coe®? 422 4z, z€R

ou C et Cy sont des constantes arbitraires complexes.
La solution qui vaut 1 en 1 et dont la dérivée premiere vaut 0 en 1 est la fonction

fl@)=8—4e1™/2 4 22 4z 2 eR.
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LISTE 6 : EQUATIONS DIFFERENTIELLES (2) ET CALCUL
MATRICIEL (1)

‘I. Equations différentielles : divers‘

1. Dans certaines conditions, la température de surface y(t) d’un objet change au cours
du temps selon un <« taux > proportionnel a la différence entre la température de
I’objet et celle du milieu ambiant, que ’on suppose constante et que ’on note yy. On
obtient ainsi I’équation différentielle

Dy(t) = k(y(t) = o)

ou k est une constante strictement négative. Cette équation est appelée <« Newton’s
law of cooling > et elle est utilisée notamment pour déterminer le temps entre la mort
d’un individu et la découverte de son corps.

Résoudre cette équation et montrer alors que la température de 1’objet se rapproche
de la température ambiante au fur et & mesure que le temps passe.

Les solutions de cette équation sont les fonctions y(t) = C'e** +yo, t €R ol C est une constante
arbitraire réelle.
Comme k£ < 0,on a lim y(t) = yo.

t—+o0

2. Depuis un recensement de la population d’un pays, on constate que la vitesse
d’accroissement de la population est, a tout instant, proportionnelle au nombre
d’habitants a cet instant. Aprés combien de temps depuis ce recensement, cette
population sera-t-elle triple sachant qu’elle a doublé en 50 ans ?

501n(3)
In(2)
3. La vitesse initiale d’une balle roulant sur un sol horizontal est de 10 m/s. Vu les

frottements, la vitesse décroit avec un taux constant de 2 m/s?. Quand la balle sera
arrétée, quelle distance aura-t-elle parcourue depuis son point de départ ?

La population aura triplé depuis le recencement apres ~ 79,248 ans donc environ 79 ans.

Quand la balle sera arrétée, elle aura parcouru une distance de 25 m.

4. Déterminer la valeur de la constante c de telle sorte que la fonction f(z) = 322, » € R
soit une solution de I’équation différentielle

dy 2 dy B

La constante vaut —1/12.

5. Soit L la longueur d’un pendule et soit T sa période d’oscillation. Si les oscillations
sont petites et si le pendule n’est soumis & aucune force autre que la gravité, alors un
modele liant 7" et L est ’équation différentielle

ar T

dL 2L’
Montrer que cela implique que la période T est proportionnelle & la racine carrée de
la longueur L.

Les solutions de cette équation sont les fonctions T(L) = CVL, L €]0,4+oc0[ ou C est une
constante arbitraire strictement positive.
La période T est donc bien proportionnelle a la racine carrée de la longueur L.
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II. Opérations entre matrices

1. Soient les matrices A, B, C' données par
2 1 2 0 .
A={ 140 -1 B=[1 4 |, C:(_SQ. 1/(?/;1))
3/i (2—1i)? i =2 vt

Si possible, effectuer les opérations suivantes (et simplifier la réponse au maximum).
Si cela ne I’est pas, en expliquer la raison.

1) A+ B, 2) A+ B, 3) AB, 4) AB+C, 5) BA, 6) CA, 7) A*C, 8)iC, 9) (iA)".

1) A+ B est impossible & calculer car les matrices n’ont pas le méme format.

=~ (4 240 -2 [ 8+4i  4+10i
2)A+B<i 3 1—4i> 3)AB(3+51 —10+8i>
11+i  (9419)/2 4 2420 6
1) AB+C = , , 5)BA=| 2+4i —3+i 12-19i
3+3i (—20+17i)/2 0 14+i —3+8

6) CA est impossible & calculer car le nombre de colonnes (2) de C n’est pas égal au nombre de
lignes (3) de A.

4 . 3/2__Z 3 (1+1i)/2
NA*C=| 3—i —3i/2 8) iC = 9 12
8+3i (—1+46d)/2
—2i -1
9) (iA)* = —1—1 )
3 4 — 34
1 00
2. Soit A une matrice carrée de dimension 3 telle que A4;; =1, Vi,j et B = 0 1 0
0 0 O
Calculer C = AB — BA et en déduire la forme de C + C.
0 0 -1 N
OnaC = 0 0 -1 et C' + C est la matrice nulle de dimension 3.
1 1 0

3. Montrer que A2 —24+3 1 =0 avec

4. Déterminer la forme générale des matrices qui commutent avec la matrice
0 1
A= ( 0! ) |

La forme générale des matrices qui commutent avec A est du type ( 2ab 2 ) (a,b € C).



7

L1STE 7 : CALCUL MATRICIEL (2)

I. Déterminants ‘

1. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

L. . -3 1 6 1 3 =3
1/ 2—-¢ 3 1 —2i 1
(e )9 5 ) o8 A

Le déterminant de A vaut (8 —i)/9, celui de B vaut 1, celui de C vaut 90 et celui de D vaut —7/2.

2. Le déterminant de chacune des matrices suivantes est un polynéme en z € C.
Factoriser ce polynéme en un produit de facteurs du premier degré.

. x 0 3
A(l—x \/§>,B<Z x+l2>’c<x ;4).D 0 z41 =

V3 2-w o ! 10 z-2

Le déterminant de A est égal a <x —

3+V13 3-V13
2\ T

celui de C vaut (z + 2i)(z — 2i) et celui de D (z + 1)%(z — 3).

) ; celui de B est égal a (x + 1),

‘II. Inversion de matrices ‘

Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne
a €R).

()

. -2 -1
e L’inverse de A est ( 1 0 )

e La matrice B ne possede pas d’inverse car son déterminant est nul.

— N

Do (i ) o0

e La matrice C est égale a son inverse.
-1 -1 -1
i i 1
i 1 1

e L’inverse de D est %

ITI. Valeurs et vecteurs propres, diagonalisation

1. Déterminer les valeurs propres des matrices suivantes et en donner la multiplicité.

- 2 1 10 1 3 0
A(’. .’), B=|03 5|, c=|3 -2 -1
vt 00 2 0 -1 1

Les valeurs propres de la matrice A sont —1 + ¢ et 1 + i; ces valeurs propres sont simples (de
multiplicité 1).

Les valeurs propres de la matrice B sont 2 (valeur propre double) et 3 (valeur propre simple).
Les valeurs propres de la matrice C sont —4, 1 et 3; ces valeurs propres sont simples.
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2. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces

matrices sont-elles diagonalisables? Pourquoi? Si elles le sont, en déterminer une
forme diagonale A, ainsi qu’une matrice inversible S qui y conduit.

5 3 -10 0 -10 0
A:<41>, B=| 1 1 0|, c=1 1 1 o
2 0 -1 0 0 -1

Calculer les produits AS et SA. Comparer les matrices obtenues. N’aurait-on pas pu
prévoir ce resultat sans effectuer les calculs 7 Pourquoi ?

e Matrice A : 2 valeurs propres simples : —2 et 5; la matrice est donc diagonalisable.

N 3 .
Les vecteurs propres relatifs a la valeur propre —2 sont du type ¢ ( 4 ) , ¢ € Cy et ceux relatifs

a la valeur propre 5 sont du type ¢’ , ¢ € C.

1

1
1 -2 0 3 1 . .

On a, par exemple, A = S7*AS = 0 5 ) avec S = 4 1 ) siom note A la matrice

donnée.
-6 5

8 5
onaA=S5"145 & SA = AS en multipliant les deux membres & gauche par S.

Des lors, en effectuant les produits, on a AS = ( ) = SA. Comme A est diagonalisable,

e Matrice B : 2 valeurs propres, I'une simple 1 et 'autre double —1.
0
Les vecteurs propres relatifs a la valeur propre double —1 sont du typec| 0 |, ¢ € Cy. Comme
1
cette valeur propre n’engendre pas 2 vecteurs non multiples I'un de I'autre, la matrice n’est pas
diagonalisable.

0
Les vecteurs propres relatifs & la valeur propre simple 1 sont du type ¢/ [ 1 |, ¢ € Cq.
0
e Matrice C : 2 valeurs propres, I'une simple 1 et ’autre double —1.
-2 0
Les vecteurs propres relatifs a la valeur propre double —1 sont du type c; 1 +c| 0 |,
0 1
-2
¢1,c2 € Cnon simultanément nuls. Cette matrice est donc diagonalisable car les vecteurs 1
0
0
et 0 | ne sont pas multiples 'un de I'autre.
1
0
Les vecteurs propres relatifs a la valeur propre simple 1 sont du typec| 1 |, ¢ € Cy.
0
-1 0 0 -2 0 0
On a, par exemple, S~1CS = 0 —1 0 | avecS = 1 0 1 | sionnoteC lamatrice
0 0 1 0 1 0

donnée.
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3. Une matrice carrée A de dimension 2 posséde les deux valeurs propres 1 et -1, aux-
quelles peuvent étre associés respectivement les vecteurs propres

(3)= ()

Que vaut A?
La matrice A est égale a < (1)

O =
N
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LisTE 8 : CALCUL MATRICIEL (3)

I. Matrices de Leslie et matrices stochastiques‘

N

1. Les baleines bleues sont une espéce de mammiféres en voie d’extinction a cause
notamment de non respect de regles de péche. Tous les 20 ans, des chercheurs
recensent leur population (une estimation bien siir) et font la répartition entre le
nombre de baleines femelles de moins de 20 ans (les < jeunes ») et celui des baleines
femelles de strictement plus de 20 ans (les « vieilles »). Ils ont trouvé le moyen de
marquer les deux catégories de telle sorte que 1’on puisse reconnaitre les jeunes nés
d’une meére de moins de 20 ans et ceux nés d’une mere de plus de 20 ans. Le comp-
tage des baleines femelles actuellement donne les résultats suivants : 1/3 des baleines
femelles « jeunes » ont donné naissance & un petit (survivant) et 5/8 des baleines
< vieilles » ’ont fait. De plus, seulement 1/6 des baleines < jeunes » et seulement la
moitié des baleines « vieilles > ont survécu.

On suppose que les parametres sont valables a grande échelle de temps. ..

(a) Ecrire le systéeme d’équations modélisant 1’évolution des deux catégories de
baleines, en spécifiant la matrice de Leslie correspondante.

(b) Comment va évoluer la population ?

(¢) Pourquoi peut-on dire que I’espéce est en voie d’extinction ?

(a) Soient x(n) le nombre de baleines femelles < jeunes » et y(n) celui des baleines femelles
< vieilles » lors du comptage numéro n. On a le systeme :

z(n+1)\ ([ 1/3 5/8 x(n)
y(n+1) )~ \ 1/6 1/2 y(n) )
I 1/3 5/8
—\1/6 1/2 )
(b) Les valeurs propres de L sont 3/4 et 1/12 et les vecteurs propres de valeur propre 3/4 sont
3
“\ 2

Vu le théoreme de Perron-Frobenius, le nombre de baleines de chaque catégorie, de méme que le
total évolue selon

La matrice de Leslie

est réguliere.

avec ¢ € Cq.

lim Mzgm lim MZ?’/‘L lim r(n+1)+y(n+1)

) niPo g () e T 2y

La répartition de la population selon les deux catégories évolue vers la répartition 3/5, 2/5.
(c) Comme 3/4 < 1, la population est donc en voie d’extinction.

2. L’institut météorologique a fait les observations suivantes :
— on n’a jamais vu deux jours ensoleillés consécutifs,
— g’il fait beau un jour donné, on a une chance égale d’avoir de la pluie ou de la neige
le lendemain,
— s’il pleut ou s’il neige, on a une chance sur deux que le temps se maintienne le jour
suivant et une chance sur quatre qu’il fasse beau le lendemain.
Sachant cela,

(a) Représenter la matrice de transition de ce systéme.
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(b) Sachant qu’il fait beau aujourd’hui, quel pourcentage de chance a-t-on qu’il fasse
beau dans deux jours?

(¢) A long terme, quelle sera I’évolution du climat ?

(a) Si on note Ny, Py et Sy respectivement un jour de neige, un jour de pluie et un jour de soleil
au départ et N1, P, et S; la météo correspondante le jour suivant, on a

N 1/2 1/4 1/2 N
Po|=| 14 12 12 P,
51 1/4 1/4 0 So

et la matrice de dimension 3 est la matrice de transition du systéme.
(b) Sachant qu’il fait beau aujourd’hui, on a 25 % de chance qu’il fasse beau dans 2 jours.

0,4

(c) Le vecteur de probabilité de valeur propre 1 est égal & [ 0,4 |. A long terme, on 4 chances
0,2

sur 10 qu’il neige ou qu’il pleuve et 2 chances sur 10 qu’il fasse ensoleillé.

. Dans un laboratoire, a chaque repas, des lapins ont le choix entre manger des carottes,
de la salade ou des pissenlits mais ne peuvent manger qu’un aliment d’une seule
catégorie lors d’un méme repas. Comme ils sont gourmands, ils ne manquent jamais
un repas.

L’observation montre que si un lapin a mangé des carottes & un repas, il en mangera
au repas suivant dans 70 % des cas; sinon, il mangera de la salade une fois sur 5 ou
des pissenlits 1 fois sur 10.

S’il a mangé de la salade, il en mangera encore 6 fois sur 10 au repas suivant ; sinon,
il mangera un des deux autres aliments de fagon équiprobable.

Enfin, s’il a mangé des pissenlits, au repas suivant il y a 1 chance sur 5 qu’il mange
des carottes et 2 chances sur 5 de la salade.

(a) Si un lapin vient de manger des carottes, quelle est la probabilité qu’il mange de
la salade dans deux repas ?

(b) A longue échéance, que mange ce lapin ?

(a) La probabilité pour que le lapin mange de la salade dans 2 repas vaut 0, 3.
(b) A longue échéance, le lapin mange des carottes ou de la salade avec une probabilité de 2/5,
des pissenlits avec une probabilité de 1/5.

. Un individu vit dans un milieu ou il est susceptible d’attrapper une maladie par
piqiire d’insecte. Il peut étre dans 1’un des trois états suivants : immunisé (7), malade
(M), non malade et non immunisé (S). D’un mois a ’autre, son état peut changer
selon les regles suivantes :

- étant immunisé, il peut le rester avec une probabilité 0,9 ou passer a ’état S avec
une probabilité 0,1 ;
- étant dans I’état S, il peut le rester avec une probabilité 0,5 ou passer a 1’état M
avec une probabilité 0,1
- étant malade, il peut le rester avec une probabilité 0,2 ou passer a 1’état S avec
une probabilité 0, 8.
Déterminer
a) la matrice de transition du systéme;
b) la probabilité qu’un individu immunisé soit encore immunisé aprés deux mois;
¢) la probabilité qu’a long terme, un individu soit immunisé.

(a) Notons respectivement Iy, My et Sy les probabilités qu'un individu soit immunisé, malade,
non malade et non immunisé un jour donné. Le mois suivant, ces probabilités sont respectivement
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données par

I, = 0,915+0,45y+ 0M, I 0,9 0,4 0 I

S1 = 0,11,+0,55+0,8My < St = 0,1 0,5 0,8 So

M, = 0Ip+0,15 +0,2M, My 0 0,1 0,2 My,
=T

Donc, la matrice de transition du systéme est donnée par la matrice T

(b) Si un individu est immunisé un jour donné, la probabilité qu’il soit immunisé deux mois plus
tard est de 85%.

(¢) A long terme, la probabilité qu'un individu soit immunisé est donnée par %, c’est-a-dire envi-
ron 78%.

. Un biologiste étudie le passage d’une molécule de phosphore dans un écosystéme.

Celle-ci peut se trouver dans le sol, dans I’herbe, dans le bétail ou peut disparaitre de
I’écosystéme. D’une heure a ’autre, le transfert peut s’effectuer selon les modalités
suivantes :
- étant dans le sol, la molécule a 3 chances sur 5 d’y rester, 3 chances sur 10 de passer
dans I’herbe et 1 chance sur 10 de disparaitre;
- étant dans I’herbe, elle a 1 chance sur 10 de revenir dans le sol, 2 chances sur 5 de
rester dans I’herbe et 1 chance sur 2 de se retrouver dans le bétail ;
- étant dans le bétail, elle a 3 chances sur 4 de retourner dans le sol, 1 chance sur 5
de rester dans le bétail et 1 chance sur 20 de disparaitre ;
- si la molécule disparait, elle ne réapparait plus nulle part.
Déterminer la matrice de transition du systéme.

Notons respectivement Sy, Hg, By et Dg les probabilités qu’une molécule de phosphore se trouve
dans le sol, dans I’herbe, dans le bétail et disparaisse a une heure donnée. L’heure suivante, ces
probabilités sont respectivement données par

Si = 3S0/5+ Ho/10 + 3By /4 + 0Dy S 3/5 1/10 3/4 0 S

Hy = 3S0/10+ 2Hy/5+ 0By + 0D, H, 3/10 2/5 0 0 Hy

By = 0So+ Hy/2+ By/5+ 0D, |l B | 7| o 12 1/5 o0 By

Dy = Sy/10+ 0Hy + By/20 + 1Dy D, 110 0 1/20 1 Do
=T

Donc, la matrice de transition du systéeme est donnée par la matrice 7.

. Depuis des mois, un laborantin de I’ile de Réve travaille sur une substance, appelée

KillCovid, trés prometteuse pour la découverte d’un médicament qui permettrait de
détruire le virus responsable de la maladie Covid. Le KillCovid n’a malheureusement
qu’une durée de vie de deux mois.

Le laborantin a trouvé le moyen de se servir de ce KillCovid comme catalyseur pour
en produire du nouveau, a partir d’autres substances communes tenues secretes. 11
récupere donc le KillCovid utilisé a la fin du processus. Chaque mois, en utilisant 1
dose de KillCovid d’un mois, il produit 1/2 dose de nouveau KillCovid et la propor-
tion est la méme avec le KillCovid de deux mois.

(a) Ecrire le systéme d’équations modélisant 1’évolution du stock de KillCovid (stock
agé d’un mois et stock agé de deux mois), en spécifiant la matrice de Leslie corres-
pondante.

(b) Comment va évoluer le stock de KillCovid ?
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(a) Soient x(n) le nombre de doses de KillCovid d’un mois et y(n) celui de deux mois au mois
numéro n. On a le systeme :

o) = (7 ) 06

_ 1/2 1/2
e ()
est réguliere (les éléments de L? sont strictement positifs).
(b) Les valeurs propres de L sont 1 et —1/2 et les vecteurs propres de valeur propre 1 sont

1
!
avec ¢ € Cq.

Vu le théoreme de Perron-Frobenius, le nombre de doses a tendance a se stabiliser de méme que
le total car

La matrice de Leslie

lim M:l lim le lim z(n+1)+y(n+1)

n—+00 x(n) n—+oo y(n) n—+00 m(n) + y(n) -

. Par cycle de trois ans, un gestionnaire financier s’occupe du portefeuille d’actions
d’une entreprise. Ce portefeuille comprend des actions qui viennent d’étre achetées,
d’autres qui ont été achetées un an auparavant et enfin d’autres qui sont dans le
portefeuille depuis deux ans.

Le prix de chaque action venant d’étre achetée augmente tellement qu’au début de
la deuxiéme année on peut en acheter 6 nouvelles et au début de la troisieme 10
nouvelles.

En méme temps, au cours de la premiére année, il revend la moitié de ses actions
pour investir dans I’entreprise et, au cours de la deuxiéme année, il ne conserve que
40 % des actions possédées 4 ce moment et revend les autres pour la méme raison.
(a) Ecrire le systéme d’équations modélisant 1’évolution de cette répartition des
actions selon leur durée de placement (un an, deux ans, trois ans) en indiquant quelle
est la matrice de Leslie de celle-ci.

(b) Comment va évoluer la composition du portefeuille ?

(¢) Quelle est la répartition idéale qui permet de doubler chaque nombre d’actions
de chaque type sur un an?

(a) On désigne par x1,x2, 3 le nombre d’actions placées respectivement depuis un an, deux ans,
trois ans. L’année suivante, la répartition des actions sera de 6x2 + 10x3 actions placées depuis
un an, x1/2 actions placées depuis deux ans et 2z5/5 actions placées depuis trois ans. Si on note
x1(n), x2(n), z3(n) la répartition 'année n, cela donne le systéme

x2(n+1) = /2 0 0 x2(n)
z3(n+1) 0 2/5 0 x3(n)
La matrice de Leslie
0 6 10
L = 1/2 0 0
0 2/5 0

est réguliere (les éléments de L° sont strictement positifs).
(b) Les valeurs propres de L sont 2 et —1 et les vecteurs propres de valeur propre 2 sont

20
c 5
1
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avec ¢ € Cy.
Vu le théoreme de Perron-Frobenius, le nombre d’actions de chaque type a tendance a doubler
chaque année, de méme que le total de toutes celles-ci car

im EOED oy g0, gy D Enbmtl)fohtl)

nteo  za(n) n-3 o0 21(n) + 22(n) + z3(n) =2

(¢) Les proportions de chaque type d’action dans le portefeuille se rapprochent de 20/26, 5/26, 1/26.

1. En algébre linéaire (ou géométrie analytique), une rotation du plan (d’angle 6) est
représentée par une matrice du type

= (Sl )

ol 6 est un réel (et représente la mesure de ’angle de la rotation).
— Pour tout 6, déterminer la matrice produit M; et en simplifier les éléments au
maximum.
On a
M2 — ( cos(20) —sin(20) )
07\ sin(20)  cos(26)

— Montrer que quels que soient 6,60', les matrices My et My commutent. Qu’est-ce
que cela signifie en termes de rotations ?

On a
cos(f+0') —sin(6+6) >

My M = Mo My = ( sin(04+0")  cos(6 +6")

ce qui signifie que I'ordre dans lequel on effectue les rotations n’a pas d’importance.

— Montrer que quel que soit le réel 6, la matrice

(o) )

est aussi une matrice qui représente une rotation.

On a i .
(<2t )~ (28 25

C’est donc aussi une matrice de rotation mais la rotation s’effectue dans le sens inverse de la
rotation d’angle 6.

2. Vrai ou faux (Justifier)
100
(a) Toute matrice carrée de dimension 3 commute avec | 0 1 0
0 00

Faux : si on multiplie la matrice donnée notée A a gauche et a droite par une matrice quel-

0 0 0
conque notée B, par exemple | 0 0 0 |, on anotamment que la troisieme ligne de AB est
3 00

le vecteur nul alors que la troisieme ligne de BA a pour premier élément 3.

(b) La matrice
a—b a®>—ab+b?
<a2_b2 a3_b3 ) (a7b€C)
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est toujours inversible.
Faux car le déterminant de cette matrice vaut 0 si a = b ou si b = 0.

Si une matrice carrée A de dimension 2 est de déterminant nul, alors I’une des
colonnes de A est multiple de ’autre.
Vrai (cf. théorie).

Si deux lignes d’une matrice carrée A de dimension 3 sont identiques, alors
det A = 0.
Vrai (cf. théorie).

Si A est une matrice carrée de dimension 3, alors det(5A4) = 5det(A).
Faux : det(5A) = 53 det(A) = 125 det(A).

Si B est la matrice obtenue en multipliant la ligne 3 d’une matrice carrée A de
dimension 3 par 5, alors det(B) = 5det(A).
Vrai (cf. théorie).

Si X est un vecteur propre de la matrice 24 alors c’est aussi un vecteur propre de
A.
Vrai car si X # 0 est tel que 24X = AX alors on a AX = (A\/2)X

Si A est une valeur propre de A alors \? est valeur propre de AZ.
Vrai car si X # 0 est tel que AX = AX alors on a A?X = A(AX) = AAX) = AM(AX) = \?X.

0 peut étre valeur propre d’une matrice inversible.

Faux car comme A est inversible, on a det(A) # 0. Si A = 0 alors det(A—AX) =0 < det(A) =0
ce qui est absurde puisque det(A) # 0.

Autre justification possible : si X # 0 est tel que AX = 0X = 0 et que A™! existe alors
AP AX = A1 0 & X =0 ce qui est absurde puisque X # 0.

Si A est inversible, tout vecteur propre de A est aussi vecteur propre de son inverse.
Vrai car si le vecteur X non nul est tel que AX = AX et si A~! existe alors on a A71(AX) =
M™X & X = MA71X. Comme A est inversible, son déterminant n’est pas nul. Or det(A)
est la valeur en 0 du polynéme caractéristique det(A — A1). Donc 0 n’est pas valeur propre de
A cest-a-dite A\ £Z0Oetona X = AAT1X & A71X = (1/0)X

Le carré d’une matrice est une matrice qui posseéde au moins un élément non nul.
Faux car le carré de la matrice nulle est la matrice nulle.

Si A est diagonalisable, alors sa transposée 1’est aussi.
Vrai car si S est inversible tel que S7!AS = A (A matrice dlagonale) alors les tranbposeeb des

deux membres sont des matrices égales et onaSAS1=A= A@(S H-t AS1=
& T L AT=AsionposeT = S-1,

Si A est diagonalisable et inversible, alors I’inverse est aussi diagonalisable.

Vrai car si A~! existe et si S inversible est tel que S™AS = A (A matrice diagonale), comme
det(S7L1AS) = det(A) # 0 (A est inversible) et det(A) = det(A) alors A est inversible et on a
(ST1AS) T =A"1 e st AL (STHl=A"1& 571 A1 §=A~L Ainsi I'inverse d’une
matrice diagonale est une matrice diagonale.

Si A est diagonalisable, alors A? I’est aussi.
Vrai car si S est inversible tel que St AS = A (A matrice diagonale) alors (S~ AS)(S™1AS) =
A? et vu I'associativité du produit matriciel, on a S~1(AS S71A)S = S71A2S = A? et le carré
d’une matrice diagonale est un matrice diagonale.

Les valeurs propres de I’inverse d’une matrice inversible sont les inverses des va-
leurs propres de la matrice.
Vrai. De fait, pour tout vecteur X # 0 on a

AX = XX A MAX = M XeX=) M'Xe A ' X=1/)X
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car A étant inversible, ses valeurs propres sont non nulles (voir (j) ci-dessus).
Autre justification possible : considérons le polynéme caractéristique. On a

det(A — A1) = det(A — NMAA™Y) = det(A(1 — AA™1)) = det(A) det(1 —AA™Y)

puisqu’on travaille avec des matrices carrées de méme dimension.
Des lors, si A est une matrice carrée de dimension n, on a
) )

det(A — A1) = det(A) det (A (il _ A1>) — det(A) A" det (il - A1> .

Il s’ensuit que si A annule le polynome caractéristique de A alors 1/ annule celui de A™1; et
réciproquement, si u = 1/\ annule le polynome caractéristique de A~! alors A annule celui de

A.

(p) La somme de deux matrices diagonalisables est toujours une matrice diagonali-
sable.
Faux car on a, par exemple,

1 1 0 O 1 1
( 0 2 )'* ( 0 -1 > "( 0 1 )’
les deux matrices du membre de gauche étant diagonalisables mais non celle du membre de
droite.

3. La cryptographie, pour beaucoup de monde, est un moyen de maintenir des commu-
nications privées. En effet, la protection des communications sensibles a été 1’objectif
principal de la cryptographie dans la grande partie de son histoire. Le chiffrage est la
transformation des données dans une forme illisible. Son but est d’assurer la sécurité
en maintenant 1’information cachée aux gens a qui I’information n’est pas adressée,
méme ceux qui peuvent voir les données chiffrées. Le déchiffrage est I’inverse du chif-
frage ; c’est la transformation des données chiffrées dans une forme intelligible.
Aujourd’hui, les gouvernements emploient des méthodes sophistiquées de codage et de
décodage des messages. Un type de code, qui est extrémement difficile a déchiffrer,
se sert d’une grande matrice pour coder un message. Le récepteur du message le
décode en employant ’inverse de la matrice. Voici un exemple de codage/décodage
d’un message par ce procédé.

Considérons le message

SUIS EN DANGER

(4 %)=

Pour le codage, on assigne a chaque lettre de ’alphabet un nombre, a savoir simple-
ment sa position dans I’alphabet, c’est-a-dire A correspond a 1, B correspond a 2, ...,
Z correspond a 26. En outre, on assigne le nombre 27 & un espace. Ainsi, le message
devient :

ainsi que la matrice de codage

s U 1 S * E N * D A N G E R
19 21 9 19 27 5 14 27 4 1 14 7 5 18.

Puisqu’on emploie une matrice 2 x 2, on décompose la forme numérique de ce message
en une suite de vecteurs? 1 x 2 :

(19 21), (9 19), (27 5), (14 27), (4 1), (14 7), (5 18).

2. Dans le cas ou il faut compléter le dernier vecteur, il suffit d’y placer des < 27 >, ce qui revient & compléter le message
par des espaces pour avoir un nombre de caractéres qui soit multiple de la dimension de la matrice de codage.
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On code alors le message en multipliant chacun de ces vecteurs par la matrice de
codage C, ce qui peut étre fait en définissant une matrice dont les lignes sont ces
vecteurs et en multipliant cette derniére par C, ce qui nous donne :

19 21 2 25
9 19 ~10 39
27 5 — 22 -39
14 27 (1 3 ): -13 53
41 3 -5
14 7 T T
5 18 ~13 44

Deés lors, le message crypté est donné par les lignes de cette derniére matrice que 1’on
place bout a bout pour la transmission :

-2, 25, —10, 39, 22, —39, —13, 53, 3, =5, 7, =7, —13, 44.
Enfin, pour décoder le message, le récepteur a recours a la méme technique que celle
employée pour le codage mais en utilisant 1’inverse de la matrice de codage, qui est

donnée ici par
(3 2
o (32).

Il doit donc calculer le produit

-2 25 19 21
-10 39 9 19
22 -39 27 5
—-13 33 < Z1’> ? ) =| 14 27
3 ) 4 1
7 -7 14 7
—-13 44 5 18

et il retrouve bien la matrice correspondant au message de départ, ce qui lui permet
de lire le message :
19 21 9 19 27 5 14 27 4 1 14 7 5 18
s U 1 S * E N * D A N G E R.

Le Gouvernement a réussi a intercepter le message crypté suivant, provenant de
I’ennemi public n°1 et destiné a ’ennemi public n°2 :

—18, —21, =31, 53, 48, 61, 3, —15, —21, —34, —30, —43, 45, 42, 48.
L’un de ses meilleurs espions infiltrés, James Bond, a découvert que la matrice utilisée
par ’ennemi pour coder ce message est la suivante :

-3 -3 —4
0 1 1
4 3 4

Malheureusement, il n’y connait rien en calcul matriciel et personne ne peut déchiffrer
ce message... Votre mission est de décoder ce message dans les plus brefs délais.

Solution. La matrice de décodage est donnée par l'inverse de la matrice de codage, c’est-a-dire la
matrice

1 0 1
4 4 3
-4 -3 -3
Le message est le suivant :
22 9 12 1 9 14 2r 3 21 18 9 5 21 24 27
v 1 L. A1 N * C U R I E U X *
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