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Introduction

Généralités

Ce fascicule fournit aux étudiants les listes d’exercices à résoudre lors des répétitions du cours de
MATHEMATIQUES GENERALES II (MATH0009-06) de l’année académique 2025-2026. Il présente
aussi la résolution complète d’exercices de base (listes 2002/2003) et les solutions des exercices des listes
2003/2004 et 2004/2005 couvrant la matière de ce cours s’adressant aux futurs bacheliers de deuxième
bloc en biologie et en géographie.

Ce fascicule a été rédigé pour répondre à divers objectifs. Il veut fournir aux étudiants une référence
correcte sur laquelle s’appuyer pour tenter de résoudre les exercices proposés au cours des répétitions.

La rédaction de ce fascicule a également pour but d’insister sur le vocabulaire spécifique, les symboles
mathématiques à utiliser, la rigueur exigée dans la rédaction, les liens indispensables qui doivent figurer
entre les différentes étapes d’un développement mathématique. Trop souvent, en corrigeant des interro-
gations par exemple, on peut lire une succession de notations, d’équations, de calculs écrits les uns à côté
des autres sans la moindre indication relative à la logique du raisonnement. C’est cet écueil aussi qu’on
voudrait éviter aux étudiants grâce à ce fascicule.

Une dernière intention, et non la moindre, est d’amener les étudiants à prendre en charge leur formation
de la façon la plus active et la plus autonome possible.

Pour terminer, je m’en voudrais de ne pas exprimer mes plus vifs remerciements à Françoise Bastin pour
l’accueil qu’elle a réservé à cette initiative, les conseils qu’elle m’a donnés, sa relecture attentive et la
confiance qu’elle me témoigne dans mon travail avec les étudiants. Je remercie également tous les assis-
tants avec lesquels je travaille, tout spécialement Christine Amory, Rukiye Cavus et Safia Bennabi, pour
leurs suggestions constructives et leur participation à l’élaboration de ce fascicule.

Jacqueline Crasborn
Année académique 2025 - 2026

Informations relatives aux répétitions

Compétences à entrâıner

Lors des répétitions, avec l’aide des assistants, il est attendu que les étudiants s’entrâınent aux compétences
suivantes :

1) la communication (orale et écrite)
— structurée (contexte, justifications, conclusion . . . ),
— précise (vocabulaire et symboles adéquats, reflet exact de la pensée . . . ) ;

2) le sens critique (l’exercice a-t-il un sens ? le résultat est-il plausible ? . . . ) ;

3) le raisonnement logique et la compréhension (et non l’application d’une technique de calcul
sans réflexion, par imitation . . . ) ;

4) l’autonomie
— dans la recherche de pistes ou d’idées par l’utilisation, dans un premier temps, de documents

(syllabus du cours, fascicules intitulés “‘Bases” et “Exercices de base” . . . ) et, éventuellement
dans un second temps, par une demande d’aide auprès de personnes-ressources pour répondre
aux questions ou difficultés rencontrées,
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— dans l’organisation et la planification de son travail ;

5) la mâıtrise des connaissances de base des mathématiques comme outil pour les sciences.

Consignes pour préparer une répétition

1. Répondre soigneusement aux questions de théorie de la première partie de chaque liste.

2. Il est vivement conseillé
— de prendre connaissance des exercices à résoudre lors de la répétition future afin de détecter

les difficultés qui pourraient être rencontrées lors de la résolution,
— de dresser alors une liste de questions sur les difficultés rencontrées, questions à poser à

l’assistant lors de la répétition

Déroulement des répétitions

1. Dans le cas de notions qui semblent souvent poser problème aux étudiants, l’assistant résout 1
ou 2 exercices “modèle” pour leur permettre de se familiariser avec les exercices ayant trait à ces
matières ; il fait participer les étudiants à leur résolution. Ensuite, l’assistant fera une synthèse du
processus de résolution en mentionnant les éléments de théorie utilisés.

2. Enfin, chaque étudiant résout, seul ou avec son voisin, les exercices proposés dans la liste en
cherchant les informations nécessaires dans ses documents. S’il reste bloqué malgré tout, il appelle
alors l’assistant qui l’aidera dans sa recherche.

Tous les exercices de la liste doivent être résolus si possible pour la répétition suivante ; la plupart des
étudiants seront obligés d’achever à domicile. Dans ce cas, s’ils rencontrent certaines difficultés, ils peuvent
toujours en parler lors de la répétition suivante ou envoyer un courriel à l’un des assistants.

Les solutions des exercices proposés pour les répétitions se trouvent en fin de ce fascicule.

Table des matières des répétitions pour 2025-2026

1. Fonctions élémentaires.

2. Décomposition de fractions rationnelles et approximations polynomiales.

3. Calcul intégral à une variable sur un ensemble borné fermé et calcul d’aires.

4. Calcul intégral à une variable sur un ensemble non borné fermé et nombres complexes.

5. Equations différentielles (1).

6. Equations différentielles (2) et Calcul matriciel (1).

7. Calcul matriciel (2).

8. Calcul matriciel (3).

9. Révisions.

Il est possible que ce planning soit légèrement modifié en fonction de l’avancement du
cours théorique. Toute modification sera mentionnée sur la page web du cours dont
l’adresse suit

http ://www.afo.ulg.ac.be/fb/ens.html

Il est donc indispensable de la consulter régulièrement.

L’équipe des assistants
Année académique 2025 - 2026

Version 17 décembre 2025



AVERTISSEMENT

Les listes d’exercices résolus présentées dans ce fascicule sont celles des années académiques
2002/2003, 2003/2004 et 2004/2005. Elles ont été modifiées en fonction de la nouvelle ver-
sion du cours de Mathématique de F. Bastin.

Les exercices des répétitions du cours Mathématiques générales II (MATH0009-06) pour
l’année académique 2025-2026 se trouvent au chapitre 1. Ceux des années 2002/2003,
2003/2004 et 2004/2005 se trouvent dans les chapitres 2 et 3. Les solutions des exercices
des répétitions se trouvent au chapitre 4.

Jacqueline Crasborn
Année académique 2025 - 2026
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Chapitre 1

Listes d’exercices

Liste 1 : fonctions élémentaires

A préparer AVANT de venir à la répétition

I. Manipulation des fonctions élémentaires

1. Définir les fonctions sinus et cosinus de manière géométrique.

2. Donner la propriété faisant intervenir une somme et un produit
(a) pour l’exponentielle
(b) pour le logarithme népérien

II. Limites des valeurs des fonctions

1. Enoncer le théorème de la limite des fonctions de fonction.

III. Continuité et dérivation

1. (a) Quand dit-on qu’une fonction est dérivable en un point de son domaine de définition ?

(b) Que vaut alors sa dérivée en ce point ?

2. (a) A quelle(s) condition(s) une fonction de fonction est-elle dérivable sur un intervalle ouvert de
R ?

(b) Que vaut alors sa dérivée sur cet intervalle ?

3. Donner les domaines de dérivabilité des fonctions élémentaires ainsi que leurs dérivées.

4. Donner les énoncés des théorèmes de dérivation

(a) d’une combinaison linéaire de fonctions.

(b) d’un produit de 2 fonctions.

(c) d’un quotient de 2 fonctions.

5. Quel est le lien entre la dérivée d’une fonction (resp. sa dérivée seconde) et sa croissance (resp. sa
concavité) ?

IV. Théorème de l’Hospital

1. (a) Quelles sont les hypothèses à vérifier pour l’application du théorème de l’Hospital ?

(b) Si ces hypothèses sont vérifiées, quelle est la thèse du théorème de l’Hospital ?

1
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ATTENTION : lors de l’application du théorème de l’Hospital,

lim
x→a

Df(x)

Dg(x)
= l+ n’entrâıne pas que lim

x→a

f(x)

g(x)
= l+.

Exercices

Lors de la répétition, les exercices I. ex 1 (f2 − f5 ), ex 2 (f1 − f4), II. ex 1 (b-c-d), III. ex
1 (c), ex 2 (e-g-h), IV. ex 1 (f5) et V. ex 1 (2-5-9-12) seront résolus par l’assistant

I. Eléments de base relatifs aux fonctions

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous. Si la fonction
est composée, mentionner de quelles fonctions élémentaires elle est la composée

f1(x) =
1

2− |x+ 1|
, f2(x) = ln(−x2 − 2x+ 3), f3(x) =

√
x− 1

x− 2
, f4(x) =

√
x− 1√
x− 2

f5(x) = ln(ex − 1), f6(x) = ln
(√

1 + x2 − x
)
, f7(x) = arcsin(x2 − 1)

2. Déterminer le domaine de définition des fonctions données explicitement ci-dessous et les représenter
graphiquement (uniquement en se servant des symétries et des représentations graphiques de ln et
de l’exponentielle).

f1(x) = ln(−x), f2(x) = − ln

(
1

|x|

)
, f3(x) = | − ln(x)|, f4(x) = ln

(
1

x

)
f5(x) = − exp(x), f6(x) = exp(x+ 1), f7(x) = exp(x) + 1

II. Manipulation des fonctions élémentaires

1. Simplifier les expressions suivantes au maximum

(a) ln (cos(π/3))+ln
(

(sin(4π/3)
2
)
, (b) tan

(
ln(e3π/2)

)
, (c) exp(3 ln(2e)), (d) arcsin

(
−
√

3

2

)

(e) arcsin

(
sin

(
4π

5

))
, (f) arctan

(√
3

3

)
, (g) tan

(
arctan

(π
2

))
, (h) arctan

(
tan

(
4π

7

))
.

III. Limites des valeurs des fonctions

1. Se rappeler les limites relatives aux fonctions élémentaires et en déduire rapidement les quelques
limites suivantes

(a) lim
x→0

exp

(
1

x

)
, (b) lim

x→−∞

1

ln(x2)
, (c) lim

x→1+
arctan

(
1

x− 1

)
.

2. Calculer (si possible) les limites suivantes, sans appliquer le théorème de l’Hospital

(a) lim
x→2

1

x2 − 4
(b) lim

x→+∞
(−x2 − 2x) (c) lim

x→−∞

√
1 + x6

x3

(d) lim
x→0+

cotan(x)

sin(3x)
(e) lim

x→0

tan(x)

sin(2x)
(f) lim

x→1−

x2 − 1

|1− x|

(g) lim
x→−∞

−2x2 + 5x

x2 + 3
(h) lim

x→+∞
(ln(3x+ 2)− ln(3x)) (i) lim

x→+∞
ln(| − x+ π|)
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IV. Continuité et dérivation

1. On donne des fonctions par les expressions explicites suivantes. En déterminer le domaine de
définition, de continuité, de dérivabilité et en calculer la dérivée première.

f1(x) = 5
√

3x2 + 1 f2(x) =
1√

2 + x
f3(x) =

1

3x2 + 6x+ 3
f4(x) = arctan(cos(x))

f5(x) =
√

sin 2x f6(x) = sin(cotan(x)) f7(x) = ln(x4) f8(x) = ln(x2 + x− 2)

2. On donne la fonction g dérivable sur ]− 1, 1[ et la fonction f : t 7→ f(t) = g(ln(t)).
(a) Déterminer le domaine de dérivabilité de f .
(b) Calculer la dérivée de f en fonction de la dérivée de g.

(c) Mêmes questions si g est dérivable sur ]0, 3[ et si f est la fonction y 7→ f(y) = g(
√
y2 − 1).

3. Soit F : t 7→ F (t) = f(x(t)) avec x(3) = 2, Dx(3) = 5 et (Dxf)(2) = −4. En supposant F
dérivable en 3, que vaut (DF )(3) ?

V. Théorème de l’Hospital

1. Calculer les limites suivantes (dans chaque cas, si ce n’est pas possible ou si elle n’existe pas, en
donner la raison)

(1) lim
x→0+

cos(2x)

x+ 1
(2) lim

x→+∞
x ln

(
2 +

1

x

)
(3) lim

x→0

arcsin(2x)

x

(4) lim
x→0+

√
x3 ln( 5

√
x) (5) lim

x→−∞

ln(1/|x|)√
x2

(6) lim
x→−∞

3x2 + 1

arctan(x2 + 2)

(7) lim
t→1+

(1− t) ln(t2 − 1) (8) lim
x→2−

ln(x− 2)

|2− x|
(9) lim

x→+∞

ln(x2 − 3x− 4)

x− 4

(10) lim
x→+∞

(
ln(|2− x|)− ln(x2)

)
(11) lim

x→π

1 + cos(x)

sin(x)
(12) lim

x→0

tan(x)− sin(x)

x3

(13) lim
u→+∞

u2

e3u
(14) lim

y→−∞
y e−y

2

(15) lim
x→+∞

exp(x)√
exp(x2)
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Liste 2 : décomposition de fractions rationnelles
et approximations polynomiales

A préparer AVANT de venir à la répétition

I. Décomposition en fractions simples

1. Définir
(a) fraction rationnelle
(b) fraction rationnelle propre
(c) fraction rationnelle simple

2. Quel est le processus à suivre pour décomposer une fraction rationnelle en une somme de fractions
simples ?

II. Approximations polynomiales

1. Qu’appelle-t-on approximation polynomiale d’une fonction en un point de son domaine de définition ?

2. Quelle forme cette approximation a-t-elle quand la fonction est suffisamment dérivable ?

3. (a) Enoncer le résultat appelé � Développement limité de Taylor �.

(b) Relier ce résultat aux notions d’approximation polynomiale et de reste de l’approximation
polynomiale d’une fonction en un point.

Exercices

Lors de la répétition, les exercices I. ex 1 (f-g) ainsi que II. ex 1 (f2) et ex 2 seront résolus
par l’assistant.

I. Décomposition en fractions simples

1. Décomposer les fractions rationnelles suivantes en fractions rationnelles simples à coefficients réels.

(a)
1

x2 − 4x+ 4
, (b)

x

−x2 + 2x+ 3
, (c)

2

x(x2 − 4x+ 4),
(d)

x2 + 1

3x+ 1

(e)
x2 − 2

x2 + 2
, (f)

x3

x3 + 1
, (g)

x

x2 + 1

II. Approximations polynomiales

1. Dans chacun des cas suivants, déterminer l’approximation polynomiale à l’ordre n en x0 pour la
fonction fk. Représenter f2 ( —-ou f3 ou f5— ) et ses approximations. Pour f5,
a) donner une expression explicite du reste de ces approximations.
b) indiquer où se situe le graphique de f5 au voisinage de 0 par rapport à celui de chacune des
approximations en tenant compte du point précédent.

f1(x) = cos(x) e3x, x0 = 0, n = 0, 1, 2, 3 f2(x) =
√

1 + 9x, x0 = 0, n = 0, 1, 2
f3(x) = 1/(1− 2x), x0 = 0, n = 0, 1, 2 f4(x) = arctan(x), x0 = 0 (resp. x0 = 1), n = 0, 1, 2
f5(x) = cos2(x), x0 = 0, n = 0, 1, 2 f6(x) = sin(x), x0 = 1, n = 0, 1, 2

2. Déterminer l’approximation polynomiale à l’ordre 3 en 0 de la fonction cos et en estimer le reste.
Représenter la fonction et cette approximation dans le même repère orthonormé.
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3. La force de marée agissant sur une masse m peut être définie comme la différence entre l’attraction
de la Lune sur cette masse située à la surface de la Terre et l’attraction de la Lune sur cette masse
en supposant qu’elle est au centre de la Terre. Si on désigne par R le rayon terrestre, d la distance 1

Terre-Lune, G la constante de gravité, M la masse de la Lune, on peut alors écrire

F =
GMm

(d−R)2
− GMm

d2

en un point de la surface terrestre situé sur la droite joignant le centre de la Terre et le centre
de la Lune. En tenant compte du fait que le rapport R/d est petit, une expression approximative
(simplifiée) de la force F est donnée par

FApprox =
2GMmR

d3
.

Expliquer pourquoi une approximation de F est donnée par l’expression précédente.

1. entre les centres respectifs
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Liste 3 : Calcul intégral à une variable
sur un ensemble borné fermé et calcul d’aires

A préparer AVANT de venir à la répétition

I. Calcul d’intégrales sur un ensemble borné fermé

1. Donner une condition suffisante pour qu’une fonction soit intégrable sur un intervalle borné fermé
de R.

2. Comment les primitives permettent-elles de calculer une intégrale ?

3. Citer l’énoncé du théorème d’intégration par variation de primitive

II. Calcul d’aires

Quelle est l’interprétation graphique de l’intégrale d’une fonction continue à valeurs positives (resp.
négatives) sur un intervalle borné fermé de R ?

Exercices

Lors de la répétition, les exercices de calcul intégral I. ex 2 (3-7-9), II. ex 1 et ex 2 seront
résolus par l’assistant.

I. Calcul d’intégrales sur un ensemble borné fermé

1. Soit a > 0. Démontrer et interpréter graphiquement que

(a) si f est une fonction continue et paire sur [−a, a], alors

∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx

(b) si f est une fonction continue et impaire sur [−a, a], alors

∫ a

−a
f(x)dx = 0

2. Calculer les intégrales suivantes (si c’est possible)

(1)

∫ 1

−2
(x2 + 2x) dx (2)

∫ 1

−1
xex dx (3)

∫ 0

−1
xe−x

2

dx

(4)

∫ 3

1/2

√
3 +

x

2
dx (5)

∫ π/3

π/4

sin2(x) dx (6)

∫ π/3

π/4

cotan2(x) dx

(7)

∫ π

0

x sin2(x) dx (8)

∫ π/2

0

cos(x) sin2(x) dx (9)

∫ 4

−1

x+ 1

x+ 2
dx

(10)

∫ 1

−1
arctan(x) dx (11)

∫ 2
√
3

−2

1

4 + x2
dx (12)

∫ √3

0

1√
9− x2

dx

3. En cartographie, sur une carte de Mercator, l’ordonnée d’un point proche de l’équateur et dont la
latitude est ϕ ∈ [0, π2 [, est donnée par

y(ϕ) = R

∫ ϕ

0

1

cos(u)
du.

Montrer que

y(ϕ) = R ln
(∣∣∣tan

(ϕ
2

+
π

4

)∣∣∣) .
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II. Calcul d’aires

1. Calculer l’aire de la partie du plan dont une description analytique est la suivante{
(x, y) : x ∈

[
π

4
,

5π

4

]
, y ∈ R et cos(x) ≤ y ≤ sin(2x)

}
.

Donner aussi une représentation graphique de cet ensemble.

2. Calculer l’aire de la partie du plan dont une description analytique est la suivante{
(x, y) : x ∈ [−2, 1], y ∈ [x− 1, 1− x2]

}
.

Donner aussi une représentation graphique de cet ensemble.

3. On considère l’ensemble {(x, y) ∈ R2 : x ≤ y ≤ 2x, y ≥ x2}. Donner une représentation graphique
de cet ensemble en le hachurant et calculer l’aire de cette région du plan.
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Liste 4 : Calcul intégral à une variable sur un
ensemble non borné fermé et nombres complexes

A préparer AVANT de venir à la répétition

I. Calcul d’intégrales sur un ensemble non borné fermé

1. Soit f une fonction continue sur l’intervalle [a, b[ de R, a, b ∈ R ( ou b = +∞).

(a) Donner la définition de l’intégrabilité de f sur [a, b[.

(b) Que devient-elle si f est à valeurs positives (resp. négatives) sur [a, b[ ?

(c) Donner la définition de l’intégrale de f sur [a, b[ si f y est intégrable.

2. Soit s ∈ R. Quand la fontion f définie par f(x) = xs est-elle intégrable sur ]0, 1] (resp. sur [1,+∞[) ?

3. Quelles sont les principales techniques d’intégration ?

II. Les nombres complexes

1. Définir un nombre complexe puis en donner sa notation pratique.

2. Définir les parties réelle et imaginaire, le conjugué et le module d’un nombre complexe.

3. Dans le plan complexe,
(a) quelle est l’interprétation graphique du module d’un nombre complexe ?
(b) que dire de la représentation d’un nombre complexe et de son conjugué ?

4. Que peut-on dire des puissances naturelles de i ?

5. Si z est un nombre complexe non nul, comment rendre réel le dénominateur de 1/z ?

6. Si z = a+ ib (a, b ∈ R), en donner la forme trigonométrique.
Quel lien peut-on faire avec les coordonnées polaires ?

7. Quelles différences y a-t-il entre la résolution et les solutions d’une équation du second degré dans
R et dans C ?

Exercices

Lors de la répétition, les exercices I. ex 1 (2-7-9) ainsi que les exercices II. ex 1 (2-4) et ex
4 (1-2) seront résolus par l’assistant

I. Calcul d’intégrales sur un ensemble non borné fermé

1. Calculer les intégrales suivantes (si c’est possible)

(1)

∫ 2

0

x+ 1√
x

dx (2)

∫ 0

−1
ln(x2) dx

(3)

∫ e

−1
x ln(|x|)) dx (4)

∫ 0

−∞

1

9x2 + 4
dx

(5)

∫ +∞

2

1

9x2 − 4
dx (6)

∫ +∞

2

1

x2 − 2x+ 1
dx

(7)

∫ +∞

1

1

x2 + 2x+ 5
dx (8)

∫ −2
−∞

1

x2 + 2x− 3
dx

(9)

∫ π/3

−∞
cos(2x) ex dx (10)

∫ +∞

0

x e2x dx

(11)

∫ 1

0

ln(x) dx (12)

∫ +∞

4

1

x2 − 4
dx
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II. Les nombres complexes

1. Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des complexes ci-
dessous. Représenter ces complexes dans le plan muni d’un repère orthonormé (�X = axe réel � et
� Y= axe imaginaire �)

i+ 1, (−i+ 1)(−1− 2i),
1

−i+ 1
,

i7

i− 1
, (1− i)2

2. Déterminer la forme trigonométrique des complexes suivants et les représenter dans le plan muni
d’un repère orthonormé (� X = axe réel � et � Y= axe imaginaire �)

−i, i+ 1,
1

2
(
√

3− i).

3. On suppose que α est un nombre réel. Déterminer les partie réelle, imaginaire, le conjugué et le
module de chacun des complexes ci-dessous. Représenter ces complexes dans le plan muni d’un
repère orthonormé (� X = axe réel � et � Y= axe imaginaire �) en supposant que α appartient
à l’intervalle [π/2, π[

cos(α)− i sin(α),
1

cos(α)− i sin(α)
, (cos(1) + i sin(1))(cos(α)− i sin(α)), sin(2α)− i cos(2α).

4. Résoudre les équations suivantes et représenter les solutions dans le plan muni d’un repère ortho-
normé (� X = axe réel � et � Y= axe imaginaire �)

(1) z2 + 8 = 0 (2) 27z3 + 1 = 0 (3) z2 + 2 = iz (4) z2− z+ 1 + i = 0 (5) z2− (1−2i)z = 1 + i
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Liste 5 : équations différentielles (1)

A préparer AVANT de venir à la répétition

I. Equations différentielles

1. Définir une EDLCC 2 d’ordre 1.

2. Donner l’équation homogène associée à cette équation.

3. Donner l’équation caractéristique associée à cette équation homogène.

4. Donner l’ensemble des fonctions solutions de l’équation homogène.

5. De combien de constantes arbitraires les solutions dépendent-elles ?

6. Répondre aux mêmes questions pour une EDLCC d’ordre 2.

7. Quelle est la forme générale de toute solution d’une EDLCC ?

8. a) Qu’appelle-t-on � méthode des exponentielles polynômes � ?
b) Comment détermine-t-on une solution particulière dans ce cas pour une équation d’ordre 1
(resp. d’ordre 2) ?
c) Si le second membre ne s’écrit pas sous la forme d’un produit d’une exponentielle par un
polynôme, mais n’est, par exemple, qu’un polynôme ou un cosinus ou ... comment peut-on envisager
d’utiliser quand même cette méthode ?

9. Quel est le processus à suivre pour résoudre une EDLCC ?

Exercices

Lors de la répétition, les exercices suivants seront résolus par l’assistant : II. ex 2 (7-8-9)

I. Quelques manipulations

1. Si l’équation différentielle (Dty)2 = 2y admet 2 solutions distinctes non nulles, peut-on affirmer
qu’une combinaison linéaire de ces solutions est encore solution de cette équation ?

2. Montrer que la fonction g(t) = 3t2 − 6t+ 2, t ∈ R, vérifie le système (Dty)2 = 12(y + 1)
y(0) = 2
y(2) = 2

3. Montrer que la fonction g(t) = cotan(t)−1/ sin(t), t ∈ ]0, π/2[, vérifie l’équation 2Dy+ y2 = −1.

4. Montrer que la fonction u : x 7→ C1 e
C2x, x ∈ R, C1 et C2 étant des constantes complexes

arbitraires, vérifie l’équation v D2v − (Dv)2 = 0.

5. Montrer que la fonction x 7→ tan(x) + 1/ cos(x), x ∈ ]0, π/2[ , vérifie l’équation 2Df − f2 = 1.

II. Résolution d’équations différentielles

1. Résoudre les équations différentielles suivantes, en spécifiant dans quel intervalle on travaille

1) 4Df + 2if = 0 2)D2f = 2f 3)D2f = 0

4) D2f +Df − 2f = 0 5) 4D2f − f = 0 6) D2f + f = 0

2. abréviation pour � équation différentielle linéaire à coefficients constants �
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2. Résoudre les équations différentielles suivantes, en spécifiant dans quel intervalle on travaille
(pour l’équation 3, en donner aussi les solutions réelles)

1) D2f(x) +Df(x)− 2f(x) = ex + 4x2e2x + 1 2) 4D2f(x)− f(x) = cos2(x)− 1/2

3) D2f(x) + f(x) = x e2x 4) D2f(x) + 2Df(x) + f(x) = (2 + cos(x))e−x

5) D2f(x)− f(x) = 1 + x2, 6) 9D2f(x)−Df(x) = 1

7) D2f(x)− 4f(x) = 1 + e2x, 8) D2f(x) + 4f(x) = sin(4x)

9) Df(x)− 2f(x) = xe2x, 10) 2Df(x) + 3f(x) = x2 + 1

3. Résoudre le système suivant, en spécifiant dans quel intervalle on travaille 4D2f(x) + f(x) = x2 + x+ 2
f(0) = 0
Df(0) = 2

4. Résoudre l’équation différentielle suivante en précisant l’intervalle sur lequel on travaille.

2D2f(x) +Df(x) = 2x

Déterminer ensuite la solution qui vaut 1 en 1 et dont la dérivée première vaut 0 en 1.
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Liste 6 : équations différentielles (2) et calcul
matriciel (1)

A préparer AVANT de venir à la répétition

I. Définitions et opérations

1. Qu’appelle-t-on le type (ou le format) et la dimension d’une matrice ?

2. Etant donné une matrice A, définir

(a) sa matrice conjuguée,

(b) sa matrice transposée,

(c) sa matrice adjointe.

3. Définir les opérations suivantes et en donner les propriétés :

(a) addition de deux matrices du même type,

(b) multiplication d’une matrice par un nombre complexe,

(c) multiplication de deux matrices.

Exercices

Lors de la répétition, les exercices I. ex 1 et II. ex 1 (2 - 7) seront résolus par l’assistant.

I. Equations différentielles : divers

1. Dans certaines conditions, la température de surface y(t) d’un objet change au cours du temps
selon un � taux � proportionnel à la différence entre la température de l’objet et celle du milieu
ambiant, que l’on suppose constante et que l’on note y0. On obtient ainsi l’équation différentielle

Dy(t) = k(y(t)− y0)

où k est une constante strictement négative. Cette équation est appelée � Newton’s law of
cooling � et elle est utilisée notamment pour déterminer le temps entre la mort d’un individu
et la découverte de son corps.

Résoudre cette équation et montrer alors que la température de l’objet se rapproche de la tempéra-
ture ambiante au fur et à mesure que le temps passe.

2. Depuis un recensement de la population d’un pays, on constate que la vitesse d’accroissement de la
population est, à tout instant, proportionnelle au nombre d’habitants à cet instant. Après combien
de temps depuis ce recensement cette population sera-t-elle triple sachant qu’elle a doublé en 50
ans ?

3. La vitesse initiale d’une balle roulant sur un sol horizontal est de 10 m/s. Vu les frottements,
la vitesse décrôıt avec un taux constant de 2 m/s2. Quand la balle sera arrêtée, quelle distance
aura-t-elle parcourue depuis son point de départ ?

4. Déterminer la valeur de la constante c de telle sorte que la fonction f(x) = 3x2, x ∈ R soit une
solution de l’équation différentielle

c

(
dy

dx

)2

+ x
dy

dx
− y = 0
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5. Soit L la longueur d’un pendule et soit T sa période d’oscillation. Si les oscillations sont petites
et si le pendule n’est soumis à aucune force autre que la gravité, alors un modèle liant T et L est
l’équation différentielle

dT

dL
=

T

2L
.

Montrer que cela implique que la période T est proportionnelle à la racine carrée de la longueur L.

II. Opérations entre matrices

1. Soient les matrices A, B, C données par

Ã =

 2 i
1 + i −1
3/i (2− i)2

 , B =

 2 0
1 4
i −2

 , C =

(
3 1/(i+ 1)
−2i i/2

)
.

Si possible, effectuer les opérations suivantes (et simplifier la réponse au maximum). Si cela ne
l’est pas, en expliquer la raison.

1) A+B, 2) A+ B̃, 3) AB, 4) AB + C, 5) BA, 6) CÃ, 7) A∗C, 8) iC, 9) (iA)∗.

2. Soit A une matrice carrée de dimension 3 telle que Alk = 1, ∀l, k et

B =

 1 0 0
0 1 0
0 0 0

 .

Calculer C = AB −BA et en déduire la forme de C̃ + C.

3. Montrer que A2 − 2A+ 3 1 = 0 avec

A =

(
2 −1
3 0

)
.

4. Déterminer la forme générale des matrices qui commutent avec la matrice(
0 1
2 0

)
.
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Liste 7 : calcul matriciel (2)

A préparer AVANT de venir à la répétition

I. Définitions et opérations

1. Qu’appelle-t-on le déterminant d’une matrice ? Peut-on toujours le définir ?

2. Citer les propriétés liées aux déterminants.

3. Qu’appelle-t-on matrice inverse d’une matrice carrée donnée ?

4. Quelle est la forme explicite de la matrice inverse lorsqu’elle existe ?

5. Donner une condition nécessaire et suffisante pour que la matrice inverse d’une matrice carrée
donnée existe.

II. Valeurs propres et vecteurs propres

1. Etant donné une matrice carrée A,

(a) qu’appelle-t-on valeur propre de A ?

(b) qu’appelle-t-on vecteur propre de A ?

2. En pratique, comment détermine-t-on les valeurs propres et les vecteurs propres d’une matrice
carrée ?

3. Qu’appelle-t-on matrice diagonale ?

4. Qu’appelle-t-on matrice diagonalisable ?

Exercices

Lors de la répétition, les exercices I. ex 1 (A - C), II. (C) et III. ex 2 (A - C) seront résolus
par l’assistant.

I. Déterminants

1. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

A =
1

3

(
2− i 3i
−1 4

)
, B =

(
1 −2i

(i+ 1)2 5

)
, C =

 −3 1 6
6 2 3
3 1 −6

 , D =
1

2

 1 3 −3
3 −3 1
−3 1 3


2. Le déterminant de chacune des matrices suivantes est un polynôme en x ∈ C. Factoriser ce po-

lynôme en un produit de facteurs du premier degré.

A =

(
1− x

√
3√

3 2− x

)
, B =

(
i x+ 2
−x −i

)
, C =

(
x −4
1 x

)
, D =

 x 0 3
0 x+ 1 x
1 0 x− 2

 .
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II. Inversion de matrices

Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne α ∈ R).

A =

(
0 1
−1 −2

)
, B =

(
2 8
1 4

)
, C =

(
sin(α) cos(α)
cos(α) − sin(α)

)
, D =

 −1 0 −1
0 −1 1
i 1 0

 .

III. Valeurs et vecteurs propres, diagonalisation

1. Déterminer les valeurs propres des matrices suivantes et en donner la multiplicité.

A =

(
i −i
i i

)
, B =

 2 1 10
0 3 5
0 0 2

 , C =

 1 3 0
3 −2 −1
0 −1 1

 .

2. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi ? Si elles le sont, en déterminer une forme diagonale ∆, ainsi qu’une
matrice inversible S qui y conduit.

A =

(
2 3
4 1

)
, B =

 −1 0 0
1 1 0
−2 0 −1

 , C =

 −1 0 0
1 1 0
0 0 −1

 .

Calculer les produits AS et S∆. Comparer les matrices obtenues. N’aurait-on pas pu prévoir ce
resultat sans effectuer les calculs ? Pourquoi ?

3. Une matrice carrée A de dimension 2 possède les deux valeurs propres 1 et -1, auxquelles peuvent
être associés respectivement les vecteurs propres(

2
2

)
et

(
1
−1

)
.

Que vaut A ?
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Liste 8 : calcul matriciel (3)
A REVOIR EN FONCTION DE L’AVANCEE DU COURS

A préparer AVANT de venir à la répétition

I. Matrices de Leslie et matrices stochastiques

Etant donné une matrice carrée A,

1. qu’appelle-t-on matrice de Leslie, matrice de Leslie régulière ? Ne pas considérer cette question si
la matière n’a pas été vue au cours

2. qu’appelle-t-on matrice stochastique, matrice stochastique régulière ?

3. qu’appelle-t-on vecteur de probabilité ?

Exercices

Lors de la répétition, les exercices I. ex 1 et ex 2 ainsi que II. ex 1 et ex 2 seront résolus
par l’assistant.
La liste des exercices de la partie I sera peut-être revue en fonction de l’avancée du cours

I. Matrices de Leslie et matrices stochastiques

1. Les baleines bleues sont une espèce de mammifère en voie d’extinction à cause notamment de non
respect de règles de pêche. Tous les 20 ans, des chercheurs recensent leur population (une estima-
tion bien sûr) et font la répartition entre le nombre de baleines femelles de moins de 20 ans (les
� jeunes �) et celui des baleines femelles de strictement plus de 20 ans (les � vieilles �). Ils ont
trouvé le moyen de marquer les deux catégories de telle sorte que l’on puisse reconnâıtre les jeunes
nés d’une mère de moins de 20 ans et ceux nés d’une mère de plus de 20 ans. Le comptage des
baleines femelles actuellement donne les résultats suivants : 1/3 des baleines femelles � jeunes� ont
donné naissance à un petit (survivant) et 5/8 des baleines � vieilles � l’ont fait. De plus, seulement
1/6 des baleines � jeunes � et seulement la moitié des baleines � vieilles � ont survécu.
On suppose que les paramètres sont valables à grande échelle de temps. . .
(a) Ecrire le système d’équations modélisant l’évolution des deux catégories de baleines, en spécifiant
la matrice de Leslie correspondante.
(b) Comment va évoluer la population ?
(c) Pourquoi peut-on dire que l’espèce est en voie d’extinction ?

2. L’institut météorologique a fait les observations suivantes :
— on n’a jamais vu deux jours ensoleillés consécutifs,
— s’il fait beau un jour donné, on a une chance égale d’avoir de la pluie ou de la neige le lendemain,
— s’il pleut ou s’il neige, on a une chance sur deux que le temps se maintienne le jour suivant et

une chance sur quatre qu’il fasse beau le lendemain.
Sachant cela,

(a) Représenter la matrice de transition de ce système.

(b) Sachant qu’il fait beau aujourd’hui, quel pourcentage de chance a-t-on qu’il fasse beau dans
deux jours ?

(c) A long terme, quelle sera l’évolution du climat ?
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3. Dans un laboratoire, à chaque repas, des lapins ont le choix entre manger des carottes, de la salade
ou des pissenlits mais ne peuvent manger qu’un aliment d’une seule catégorie lors d’un même
repas. Comme ils sont gourmands, ils ne manquent jamais un repas.
L’observation montre que si un lapin a mangé des carottes à un repas, il en mangera au repas
suivant dans 70 % des cas ; sinon, il mangera de la salade une fois sur 5 ou des pissenlits 1 fois sur
10.
S’il a mangé de la salade, il en mangera encore 6 fois sur 10 au repas suivant ; sinon, il mangera
un des deux autres aliments de façon équiprobable.
Enfin, s’il a mangé des pissenlits, au repas suivant il y a 1 chance sur 5 qu’il mange des carottes
et 2 chances sur 5 de la salade.

(a) Si un lapin vient de manger des carottes, quelle est la probabilité qu’il mange de la salade dans
deux repas ?

(b) A longue échéance, que mange ce lapin ?

4. Un individu vit dans un milieu où il est susceptible d’attrapper une maladie par piqûre d’insecte.
Il peut être dans l’un des trois états suivants : immunisé (I), malade (M), non malade et non
immunisé (S). D’un mois à l’autre, son état peut changer selon les règles suivantes :

- étant immunisé, il peut le rester avec une probabilité 0, 9 ou passer à l’état S avec une proba-
bilité 0, 1 ;

- étant dans l’état S, il peut le rester avec une probabilité 0, 5 ou passer à l’état M avec une
probabilité 0, 1 ;

- étant malade, il peut le rester avec une probabilité 0, 2 ou passer à l’état S avec une probabilité
0, 8.

Déterminer
(a) la matrice de transition du système ;
(b) la probabilité qu’un individu immunisé soit encore immunisé après deux mois ;
(c) la probabilité qu’à long terme, un individu soit immunisé.

5. Un biologiste étudie le passage d’une molécule de phosphore dans un écosystème. Celle-ci peut se
trouver dans le sol, dans l’herbe, dans le bétail ou peut disparâıtre de l’écosystème. D’une heure
à l’autre, le transfert peut s’effectuer selon les modalités suivantes :

- étant dans le sol, la molécule a 3 chances sur 5 d’y rester, 3 chances sur 10 de passer dans
l’herbe et 1 chance sur 10 de disparâıtre ;

- étant dans l’herbe, elle a 1 chance sur 10 de revenir dans le sol, 2 chances sur 5 de rester dans
l’herbe et 1 chance sur 2 de se retrouver dans le bétail ;

- étant dans le bétail, elle a 3 chances sur 4 de retourner dans le sol, 1 chance sur 5 de rester
dans le bétail et 1 chance sur 20 de disparâıtre ;

- si la molécule disparâıt, elle ne réapparâıt plus nulle part.
Déterminer la matrice de transition du système.

6. Depuis des mois, un laborantin de l’ile de Rêve travaille sur une substance, appelée KillCovid, très
prometteuse pour la découverte d’un médicament qui permettrait de détruire le virus responsable
de la maladie Covid. Le KillCovid n’a malheureusement qu’une durée de vie de deux mois.
Le laborantin a trouvé le moyen de se servir de ce KillCovid comme catalyseur pour en produire
du nouveau, à partir d’autres substances communes tenues secrètes. Il récupère donc le KillCovid
utilisé à la fin du processus. Chaque mois, en utilisant 1 dose de KillCovid d’un mois, il produit
1/2 dose de nouveau KillCovid et la proportion est la même avec le KillCovid de deux mois.
(a) Ecrire le système d’équations modélisant l’évolution du stock de KillCovid (stock âgé d’un
mois et stock âgé de deux mois), en spécifiant la matrice de Leslie correspondante.
(b) Comment va évoluer le stock de KillCovid ?

7. Par cycle de trois ans, un gestionnaire financier s’occupe du portefeuille d’actions d’une entreprise.
Ce portefeuille comprend des actions qui viennent d’être achetées, d’autres qui ont été achetées
un an auparavant et enfin d’autres qui sont dans le portefeuille depuis deux ans.
Le prix de chaque action venant d’être achetée augmente tellement qu’au début de la deuxième
année on peut en acheter 6 nouvelles et au début de la troisième 10 nouvelles.
En même temps, au cours de la première année, il revend la moitié de ses actions pour investir
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dans l’entreprise et, au cours de la deuxième année, il ne conserve que 40 % des actions possédées
à ce moment et revend les autres pour la même raison.
(a) Ecrire le système d’équations modélisant l’évolution de cette répartition des actions selon leur
durée de placement (un an, deux ans, trois ans) en indiquant quelle est la matrice de Leslie de
celle-ci.
(b) Comment va évoluer la composition du portefeuille ?
(c) Quelle est la répartition idéale qui permet de doubler chaque nombre d’actions de chaque type
sur un an ?

II. Divers

1. En algèbre linéaire (ou géométrie analytique), une rotation du plan (d’angle θ) est représentée par
une matrice du type

Mθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
où θ est un réel (et représente la mesure de l’angle de la rotation).
— Pour tout θ, déterminer la matrice produit M2

θ et en simplifier les éléments au maximum.
— Montrer que quels que soient θ, θ′, les matrices Mθ et Mθ′ commutent. Qu’est-ce que cela

signifie en termes de rotations ?
— Montrer que quel que soit le réel θ, la matrice(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
est aussi une matrice qui représente une rotation.

2. Vrai ou faux (Justifier)

(a) Toute matrice carrée de dimension 3 commute avec la matrice 1 0 0
0 1 0
0 0 0

 .

(b) La matrice (
a− b a2 − ab+ b2

a2 − b2 a3 − b3
)

(a, b ∈ C) est toujours inversible.

(c) Si une matrice carrée A de dimension 2 est de déterminant nul, alors l’une des colonnes de A
est multiple de l’autre.

(d) Si deux lignes d’une matrice carrée A de dimension 3 sont identiques, alors detA = 0.

(e) Si A est une matrice carrée de dimension 3, alors det(5A) = 5 det(A).

(f) Si B est la matrice obtenue en multipliant la ligne 3 d’une matrice carrée A de dimension 3
par 5, alors det(B) = 5 det(A).

(g) Si X est un vecteur propre de la matrice 2A alors c’est aussi un vecteur propre de A.

(h) Si λ est une valeur propre de A alors λ2 est valeur propre de A2.

(i) 0 peut être valeur propre d’une matrice inversible.

(j) Si A est inversible, tout vecteur propre de A est aussi vecteur propre de son inverse.

(k) Le carré d’une matrice est une matrice qui possède au moins un élément non nul.

(l) Si A est diagonalisable, alors sa transposée l’est aussi.

(m) Si A est diagonalisable et inversible, alors l’inverse est aussi diagonalisable.

(n) Si A est diagonalisable, alors A2 l’est aussi.

(o) Les valeurs propres de l’inverse d’une matrice inversible sont les inverses des valeurs propres
de la matrice.
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(p) La somme de deux matrices diagonalisables est toujours une matrice diagonalisable.

3. La cryptographie, pour beaucoup de monde, est un moyen de maintenir des communications
privées. En effet, la protection des communications sensibles a été l’objectif principal de la cryp-
tographie dans la grande partie de son histoire. Le chiffrage est la transformation des données
dans une forme illisible. Son but est d’assurer la sécurité en maintenant l’information cachée aux
gens à qui l’information n’est pas adressée, même ceux qui peuvent voir les données chiffrées. Le
déchiffrage est l’inverse du chiffrage ; c’est la transformation des données chiffrées dans une forme
intelligible.
Aujourd’hui, les gouvernements emploient des méthodes sophistiquées de codage et de décodage
des messages. Un type de code, qui est extrêmement difficile à déchiffrer, se sert d’une grande
matrice pour coder un message. Le récepteur du message le décode en employant l’inverse de la
matrice. Voici un exemple de codage/décodage d’un message par ce procédé.
Considérons le message

SUIS EN DANGER
ainsi que la matrice de codage (

1 −2
−1 3

)
= C.

Pour le codage, on assigne à chaque lettre de l’alphabet un nombre, à savoir simplement sa position
dans l’alphabet, c’est-à-dire A correspond à 1, B correspond à 2, . . . , Z correspond à 26. En outre,
on assigne le nombre 27 à un espace. Ainsi, le message devient :

S U I S * E N * D A N G E R
19 21 9 19 27 5 14 27 4 1 14 7 5 18.

Puisqu’on emploie une matrice 2×2, on décompose la forme numérique de ce message en une suite
de vecteurs 3 1× 2 :

(19 21), (9 19), (27 5), (14 27), (4 1), (14 7), (5 18).

On code alors le message en multipliant chacun de ces vecteurs par la matrice de codage C, ce qui
peut être fait en définissant une matrice dont les lignes sont ces vecteurs et en multipliant cette
dernière par C, ce qui nous donne :

19 21
9 19
27 5
14 27
4 1
14 7
5 18


(

1 −2
−1 3

)
=



−2 25
−10 39
22 −39
−13 53

3 −5
7 −7
−13 44


Dès lors, le message crypté est donné par les lignes de cette dernière matrice que l’on place bout
à bout pour la transmission :

−2, 25, −10, 39, 22, −39, −13, 53, 3, −5, 7, −7, −13, 44.

Enfin, pour décoder le message, le récepteur a recours à la même technique que celle employée
pour le codage mais en utilisant l’inverse de la matrice de codage, qui est donnée ici par

C−1 =

(
3 2
1 1

)
Il doit donc calculer le produit

3. Dans le cas où il faut compléter le dernier vecteur, il suffit d’y placer des � 27�, ce qui revient à compléter le message
par des espaces pour avoir un nombre de caractères qui soit multiple de la dimension de la matrice de codage.
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−2 25
−10 39
22 −39
−13 53

3 −5
7 −7
−13 44


(

3 2
1 1

)
=



19 21
9 19
27 5
14 27
4 1
14 7
5 18


et il retrouve bien la matrice correspondant au message de départ, ce qui lui permet de lire le
message :

19 21 9 19 27 5 14 27 4 1 14 7 5 18
S U I S * E N * D A N G E R.

Le Gouvernement a réussi à intercepter le message crypté suivant, provenant de l’ennemi public
n◦1 et destiné à l’ennemi public n◦2 :

−18, −21, −31, 53, 48, 61, 3, −15, −21, −34, −30, −43, 45, 42, 48.

L’un de ses meilleurs espions infiltrés, James Bond, a découvert que la matrice utilisée par l’ennemi
pour coder ce message est la suivante : −3 −3 −4

0 1 1
4 3 4

 .

Malheureusement, il n’y connâıt rien en calcul matriciel et personne ne peut déchiffrer ce mes-
sage... Votre mission est de décoder ce message dans les plus brefs délais.



Chapitre 2

Révisions et compléments

2.1 Exercices sur la liste 2 : les approximations polynomiales

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Dans tout ce qui suit, sauf mention du contraire, x est l’inconnue réelle.

Liste 2002/2003

1. Déterminer l’approximation polynomiale à l’ordre n au point x0 pour chacune des fonctions
données ci-dessous.

f(x) = x sin(x), n = 3, x0 = 0, f(x) =
√

1 + x, n = 2, x0 = 0, f(x) = ln(x+ 1), n = 3, x0 = 0
f(x) = ln(x), n = 2, x0 = 2

2. Estimer le reste de l’approximation polynomiale à l’ordre 2 et à l’ordre 3 en 0 de la fonction
f(x) = sin(x), x ∈ R.

Liste 2003/2004

1. Déterminer l’approximation polynomiale de f à l’ordre n au point x0 dans chacun des cas suivants.

f1(x) = x2 cos(x), x0 = 0, n = 4 f2(x) = tan(x), x0 = π, n = 4
f3(x) = tan(x), x0 = π/4, n = 3 f4(x) =

√
2x+ 1, x0 = 0, n = 2

f5(x) = ln(1− x2), x0 = 0, n = 2 f6(x) = x arcos(x), x0 = 0, n = 2

2. Estimer le reste de l’approximation polynomiale à l’ordre 2 en 0 de la fonction cos. Représenter la
fonction et cette approximation dans le même repère orthonormé.

Liste 2004/2005

1. Dans chacun des cas suivants, déterminer l’approximation polynomiale à l’ordre n en x0 pour la
fonction donnée explicitement.

f1(x) = e−2x, x0 = 0, n = 0, 1, 2, 3 f2(x) = xe−2x, x0 = 0, n = 0, 1, 2, 3
f3(x) = 1/(1 + x2), x0 = 0, n = 0, 1, 2 f4(x) = arctan(x), x0 = 0, n = 0, 1, 2, 3
f5(x) = ln(x), x0 = 1, n = 0, 1, 2, 3 f6(x) = (1 + x)3, x0 = 0, n = 0, 1, 2, 3, 4

Représenter f3 et son approximation à l’ordre 2 en 0.

2. Estimer le reste de l’approximation polynomiale à l’ordre 4 en 0 de la fonction sin. Représenter la
fonction et cette approximation dans le même repère orthonormé.

21
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3. — L’approximation à l’ordre 3 d’une fonction en un point est toujours
2 un polynôme de degré 3
2 une fraction rationnelle dont le degré du numérateur est strictement inférieur à celui du
dénominateur
2 un nombre réel plus petit ou égal à 3
2 une fonction
2 aucune des propositions précédentes n’est correcte.

2.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
— La fonction x 7→ f(x) = x sin(x) est indéfiniment continûment dérivable sur R et on a

Df(x) = sin(x) + x cos(x), D2f(x) = 2 cos(x)− x sin(x), D3f(x) = −3 sin(x)− x cos(x)

sur R, donc
f(0) = 0, Df(0) = 0, D2f(0) = 2, D3f(0) = 0.

Dès lors, l’approximation demandée est le polynôme

P3(x) = f(0) + x Df(0) +
x2

2
D2f(0) +

x3

6
D3f(0) = x2.

— La fonction x 7→ f(x) =
√

1 + x est indéfiniment continûment dérivable sur ]− 1,+∞[ et on a

Df(x) =
1

2
(1 + x)−1/2, D2f(x) = −1

4
(1 + x)−3/2

sur ]− 1,+∞[, donc

f(0) = 1, Df(0) =
1

2
, D2f(0) = −1

4
.

Dès lors, l’approximation demandée est le polynôme

P2(x) = f(0) + x Df(0) +
x2

2
D2f(0) = 1 +

x

2
− x2

8
.

— La fonction x 7→ f(x) = ln(x+ 1) est indéfiniment continûment dérivable sur ]− 1,+∞[ et on a

Df(x) = (x+ 1)−1, D2f(x) = −(x+ 1)−2, D3f(x) = 2(x+ 1)−3

sur ]− 1,+∞[, donc

f(0) = 0, Df(0) = 1, D2f(0) = −1, D3f(0) = 2.

Dès lors, l’approximation demandée est le polynôme

P3(x) = f(0) + x Df(0) +
x2

2
D2f(0) +

x3

6
D3f(0) = x− x2

2
+
x3

3
.

— La fonction x 7→ f(x) = ln(x) est indéfiniment continûment dérivable sur ]0,+∞[ et on a

Df(x) = x−1, D2f(x) = −x−2

sur ]0,+∞[, donc

f(2) = ln(2), Df(2) =
1

2
, D2f(2) = −1

4
.

Dès lors, l’approximation demandée est le polynôme

P2(x− 2) = f(2) + (x− 2) Df(2) +
(x− 2)2

2
D2f(2) = ln(2) +

x− 2

2
− (x− 2)2

8
.
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Exercice 2

La fonction x 7→ f(x) = sin(x) étant réelle et indéfiniment continûment dérivable sur R, vu le dévelop-
pement limité de Taylor, on sait que le reste de l’approximation polynomiale à l’ordre 2 est
R2(x) = (x3/6)D3f(u0), x ∈ R et u0 strictement compris entre 0 et x.
Puisque Df(x) = cos(x), D2f(x) = − sin(x) et D3f(x) = − cos(x), on a

R2(x) = −x
3

6
cos(u0) et |R2(x)| ≤ |x|

3

6
, x ∈ R.

De même, le reste de l’approximation à l’ordre 3 est R3(x) = (x4/24) D4f(u0) = x4 sin(u0)/24, x ∈ R et
u0 strictement compris entre 0 et x puisque D4f(x) = sin(x). Mais comme l’approximation de la fonction
sinus à l’ordre 4 est la même que l’approximation à l’ordre 3, en utilisant le développement de Taylor, on
obtient

R3(x) = R4(x) =
x5

120
D5f(u0) =

x5

120
cos(u0) et |R3(x)| ≤ |x|

5

120
, x ∈ R.

2.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

f1 : P4(x) = x2 − x4/2, x ∈ R.
f2 : P4(x− π) = x− π + (x− π)3/3, x ∈ ]π/2, 3π/2[.

f3 : P3(x− π/4) = 1 + 2(x− π/4) + 2(x− π/4)2 + (8/3)(x− π/4)3, x ∈ ]− π/2, π/2[.
f4 : P2(x) = 1 + x− x2/2, x ∈ ]− 1/2,+∞[.
f5 : P2(x) = −x2, x ∈ ]− 1, 1[.
f6 : P2(x) = (π/2)x− x2, x ∈ ]− 1, 1[.

Exercice 2

R2(x) = (x3/6) sin(u) avec u strictement compris entre 0 et x ; on a donc |R2(x)| ≤ x3/6, x ∈ R.

-6 -4 -2 2 4 6

-4

-3

-2

-1

1

-
X

6
Y

y = cos(x)

y = 1− x2

2
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2.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

P0(x− x0) P1(x− x0) P2(x− x0) P3(x− x0) P4(x− x0)

f1 1 1− 2x 1− 2x+ 2x2 1− 2x+ 2x2 − 4

3
x3, x ∈ R

f2 0 x x− 2x2 x− 2x2 + 2x3, x ∈ R

f3 1 1 1− x2, x ∈ R

f4 0 x x x− x3

3
, x ∈ R

f5 0 x− 1 x− 1− (x− 1)2

2
x− 1− (x−1)2

2 + (x−1)3
3 , x ∈]0,+∞[

f6 1 1 + 3x 1 + 3x+ 3x2 1 + 3x+ 3x2 + x3 1 + 3x+ 3x2 + x3, x ∈ R

-3 -2 -1 1 2 3

-3

-2

-1

1

2

-
X

6Y

f3

y = 1− x2

Exercice 2

R4(x) = cos(u0)x5/5! avec u0 strictement compris entre 0 et x.
Approximation : P4(x) = x− x3/6, x ∈ R.

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

-
X

6
Y

y = sin(x)

y = x− x3

6

R4(x) = (x5/5 !)(u50 cos(u0)−5 u40 sin(u0)−20 u30 cos(u0)+60 u20 sin(u0)+120 u0 cos(u0)−120 sin(u0)) . u−60

avec u0 strictement compris entre 0 et x.
Approximation : P4(x) = 1− x2/6 + x4/120, x ∈ R.
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-3 -2 -1 1 2 3

-1

-0.5

0.5

1

- X

6Y

y = sin(x)/x

y = 1− x2

6 + x4

120

Exercice 3

une fonction.

2.5 Exercices sur les listes 3 et 4 : le calcul intégral à une
variable

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Liste 2002-2003

1. Calculer les intégrales suivantes∫ 2

1

√
x dx

∫ 1

0

xe−x dx

∫ 2π

0

sin2(y) dy∫ 1

0

1√
x
dx

∫ 1

0

ln(t) dt

∫ 1

0

√
1− x2 dx∫ +∞

−∞

1

1 + x2
dx

∫ +∞

0

x2e−2x dx

∫ +∞

2

1

x2 − 1
dx

2. Calculer l’aire de la partie du plan délimitée par les graphiques des fonctions f, g, h données
explicitement par f(x) = x2, g(x) = x, h(x) = 2x et donner une représentation graphique de
cette région du plan.

Liste 2003-2004

1. Pour chacun des cas suivants, déterminer si l’intégrale de f sur A existe (c’est-à-dire si
∫
A
f(x) dx

représente bien un nombre)

f(x) = sin(
√
x), A = [0, 1] f(x) =

x

1 + x2
, A =]−∞, 0]

∫ 1

−1

1

x2
dx∫ 1

0

ln(x2) dx

∫ +∞

0

ln(x)

1 + x2
dx

∫ 1

0

ln(x)

1− x2

2. Calculer les intégrales suivantes (si c’est possible)∫ π/2

π/4

1

sin2(x)
dx

∫ 3

1/2

√
1 + x dx

∫ 2

−1
x2e−xdx

∫ π

0

x cos2(x) dx∫ +∞

0

x2e−x
3

dx

∫ 1

0

ln(x2) dx

∫ 0

−1
arcsin(x) dx

∫ 0

−1
x arcsin(x) dx∫ +∞

0

ln

(
1 +

4

x2

)
dx

∫ 4

−2

x+ 4

x+ 3
dx

∫ +∞

0

1

4x2 + 9
dx

∫ −2
−∞

1

4x2 − 9
dx
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3. Calculer l’aire de la partie du plan dont une description analytique est la suivante

{(x, y) : x ∈ [0, 2π], cos(x) ≤ y ≤ sin(x)}.

Donner aussi une représentation graphique de cet ensemble.

4. La vitesse d’une voiture, partant de l’origine O et se déplaçant en ligne droite suivant l’axe X
est v(t) = 10t − t2, t ∈ [0, 10]. Déterminer la position x(t) de la voiture au temps t ∈ [0, 10].
Déterminer également quand l’accélération est nulle.

Liste 2004/2005

1. a) Pour chacun des cas suivants, déterminer si f est intégrable sur A.

f(x) = cos(
√
|x|), A = [−1, 1]; f(x) =

x2

1 + x4
, A = R; f(x) =

1

x3
, A =]0, 1] et A = [1,+∞[.

b) Calculer les intégrales suivantes (si c’est possible)∫ π/3

π/4

cos2(x) dx

∫ π/3

π/4

1

cos2(x)
dx

∫ 3

1/2

√
3− x dx

∫ 1

−1
xe−x dx

∫ π

0

x cos(x) dx

∫ 1

−1
ln(x2) dx

∫ 4

−2

x+ 4

x+ 3
dx

∫ +∞

0

1

4x2 + 9
dx

∫ −2
−∞

1

4x2 − 9
dx

∫ 1

0

x

1 + x2
dx

2. Calculer l’aire de la partie du plan dont une description analytique est la suivante{
(x, y) : x ∈ [−1, 1], y ∈ R et sin2

(πx
4

)
≤ y ≤ cos2

(πx
4

)}
.

Donner aussi une représentation graphique de cet ensemble.

3. Calculer (si possible)∫ +∞

0

1

x2 + x+ 1
dx,

∫ +∞

0

1

x2 + x− 2
dx

∫ +∞

2

1

x2 + x− 2
dx

4. La vitesse à laquelle s’accrôıt une population de virus est donnée au cours du temps par la fonction
exp(3t), t ≥ 0.

a) Avec ces données, est-il possible de déterminer la population au temps 0 ? Pourquoi ?

Si la réponse est “oui”, déterminer cette population.

b) Sachant qu’au départ la population était égale à 1 (million d’individus), déterminer la population
au temps t = 1.

5. A proposer aux étudiants

(a) Si la somme de deux fonctions f, g est intégrable sur [0, 1] alors l’intégrale de la somme f + g
est égale à la somme des intégrales de f et g. Vrai 2 Faux 2

(b) Si f, g sont deux fonctions continues et intégrables sur [0,+∞[ alors
1) toute combinaison linéaire de f et g est aussi intégrable sur[0,+∞[
2) l’intégrale d’une combinaison linéaire de f et g est égale à la combinaison linéaire des
intégrales.

Exprimer mathématiquement la partie 2) du résultat énoncé ci-dessus.

(c) Une fonction continue sur [0, 2[ est toujours intégrable sur [0, 2[ Vrai 2 Faux 2

(d) Une fonction continue sur [0, 2[ est toujours intégrable sur [0, 1] Vrai 2 Faux 2

(e) Qu’appelle-t-on largeur d’un découpage ?

(f) On donne le découpage suivant de l’intervalle [0, 1] :

0,
1

5
,

1

4
,

1

3
,

1

2
, 1.

Que vaut la largeur de ce découpage ?

(g) Si on augmente le nombre de points d’un découpage, on diminue toujours sa largeur.
Vrai 2 Faux 2
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2.6 Résolution des exercices de la “liste type 2002/2003”

Exercice 1

— Comme f : x 7→
√
x est une fonction continue sur [1, 2], ensemble borné et fermé, elle y est

intégrable et on a ∫ 2

1

√
x dx =

[
2

3

√
x3
]2
1

=
2

3
(
√

8−
√

1) =
2

3
(2
√

2− 1).

— Comme f : x 7→ x e−x est une fonction continue sur [0, 1], ensemble borné et fermé, elle y est
intégrable et on a∫ 1

0

x e−x dx =

∫ 1

0

xD(−e−x) dx = [−x e−x]10 +

∫ 1

0

e−x dx = −e−1− [e−x]10 = −2e−1 + 1 = 1− 2

e
.

— Comme f : y 7→ sin2(y) = (1− cos(2y))/2 est une fonction continue sur [0, 2π], ensemble borné et
fermé, elle y est intégrable et on a∫ 2π

0

sin2(y) dy =
1

2

∫ 2π

0

1 dy − 1

2

∫ 2π

0

cos(2y) dy =
1

2
[y]2π0 −

1

4
[sin(2y)]2π0 =

1

2
. 2π = π.

— Comme f : x 7→ 1/
√
x est une fonction continue sur ]0, 1], ensemble borné non fermé, on doit

étudier l’intégrabilité en 0. Puisque 1/
√
x = 1/x1/2, s = 1/2 étant strictement inférieur à 1, la

fonction est intégrable en 0, donc sur ]0, 1] et on a∫ 1

0

x−
1
2 dx = [2

√
x]10 = 2.

— Comme f : t 7→ ln(t) est une fonction continue sur ]0, 1], ensemble borné non fermé, on doit étudier

l’intégrabilité en 0. Considérons lim
t→0+

(t
1
2 ln(t)) et levons l’indétermination “0 .∞” par application

du théorème de l’Hospital.
Soit V =]0, ε[ avec ε > 0 assez petit. Les fonctions t 7→ ln(t) et t 7→ t−1/2 sont dérivables dans V
et Dt−1/2 = (−1/2)t−3/2 6= 0 ∀t ∈ V . De plus, on a

lim
t→0+

(t1/2 ln(t)) = lim
t→0+

ln(t)

t−1/2
= lim
t→0+

D(ln(t))

D(t−1/2)
= lim
t→0+

t−1

(−1/2)t−3/2
= −2 lim

t→0+
t1/2 = 0.

Dès lors, lim
t→0+

(t1/2 ln(t)) = 0 et puisque cette limite existe et est finie, le critère d’intégration en

θ (avec θ = 1/2 < 1) permet d’affirmer que la fonction est intégrable en 0 et donc sur ]0, 1]. Ainsi,∫ 1

0

ln(t) dt =

∫ 1

0

D(t) . ln(t) dt = [t ln(t)]10 −
∫ 1

0

t .
1

t
dt = −[t]10 = −1.

Autre méthode : la fonction f étant continue et négative sur l’intervalle d’intégration, on peut
vérifier son intégrabilité en 0 et calculer la valeur de son intégrale par application de la définition.

Si la limite lim
x→0+

∫ 1

x

ln(t) dt est finie alors f est intégrable en 0 donc sur ]0, 1] et la valeur de cette

limite est aussi la valeur de l’intégrale.
Comme

F (x) =

∫ 1

x

ln(t) dt = [t ln(t)− t]1x = −1− x ln(x) + x

et

lim
x→0+

F (x) = −1− lim
x→0+

(x ln(x)) = −1− lim
x→0+

ln(x)

x−1
,
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on lève l’indétermination “∞∞” par application du théorème de l’Hospital (les hypothèses étant
vérifiées). Ainsi, puisque

lim
x→0+

ln(x)

x−1
= lim
x→0+

D ln(x)

D(x−1)
= lim
x→0+

x−1

−x−2
= lim
x→0+

(−x) = 0,

f est intégrable sur ]0, 1] et son intégrale vaut −1.

— Comme f : x 7→
√

1− x2 est une fonction continue sur [0, 1], ensemble borné et fermé, elle y est
intégrable. Si on effectue le changement de variables g : t 7→ x = sin(t) entre ]0, π/2[ et ]0, 1[, on a∫ 1

0

√
1− x2 dx =

∫ π/2

0

√
1− sin2(t) cos(t) dt

=

∫ π/2

0

√
cos2(t) cos(t) dt

=

∫ π/2

0

cos2(t) dt

=

∫ π/2

0

1 + cos(2t)

2
dt

=

[
t

2
+

sin(2t)

4

]π/2
0

=
π

4

puisque cos(t) ≥ 0 si t ∈ [0, π/2].
— Comme f : x 7→ 1/(1 + x2) est une fonction paire continue sur R, ensemble non borné, il suffit de

vérifier l’intégrabilité en +∞. Pour cela, calculons lim
x→+∞

(
x2 . 1/(1 + x2)

)
. Cette limite existe et

est finie puisqu’elle vaut 1. Dès lors, par le critère d’intégration en θ avec θ = 2 > 1, cela prouve
que f est intégrable en +∞. Ainsi,∫ +∞

−∞

1

1 + x2
dx = 2

∫ +∞

0

1

1 + x2
dx = 2[arctan(x)]+∞0 = 2 ( lim

x→+∞
arctan(x)−arctan(0)) = 2 .

π

2
= π.

— Comme f : x 7→ x2 e−2x est une fonction continue sur [0,+∞[, ensemble non borné, on doit étudier
l’intégrabilité en +∞. Considérons lim

x→+∞
(x2 . x2e−2x) = lim

x→+∞
(x4 . e−2x) ; cette limite vaut 0

car “à l’infini, la fonction exponentielle domine toute puissance antagoniste de x”. Puisque cette
limite existe et est finie, le critère d’intégration en θ (avec θ = 2 > 1) permet d’affirmer que la
fonction est intégrable en +∞ et donc finalement sur [0,+∞[. Ainsi,∫ +∞

0

x2 e−2x dx =

∫ +∞

0

x2 D

(
−e
−2x

2

)
dx

=

[
−x

2 e−2x

2

]+∞
0

+

∫ +∞

0

x e−2x dx

= 0 +

∫ +∞

0

x D

(
−e
−2x

2

)
dx

=

[
−x e

−2x

2

]+∞
0

+
1

2

∫ +∞

0

e−2x dx

= 0− 1

4

[
e−2x

]+∞
0

= −1

4
( lim
x→+∞

e−2x − 1)

=
1

4
.
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— Comme f : x 7→ 1/(x2 − 1) est une fonction continue sur [2,+∞[, ensemble non borné, on doit
étudier l’intégrabilité en +∞. Considérons lim

x→+∞

(
x2 . 1/(x2 − 1)

)
. Cette limite existe et est finie

puisqu’elle vaut 1, ce qui prouve, par le critère d’intégration en θ avec θ = 2 > 1, que f est
intégrable en +∞ donc finalement sur [2,+∞[. Calculons tout d’abord une primitive de f en
décomposant cette fonction en une somme de fractions simples. On a, pour tout x 6= ±1,

1

x2 − 1
=

A

x− 1
+

B

x+ 1
=
A(x+ 1) +B(x− 1)

(x− 1)(x+ 1)
,

ce qui donne

(A+B)x+ (A−B) = 1⇔
{
A+B = 0
A−B = 1

⇔
{
A = 1/2
B = −1/2

et donc, si x ≥ 2

∫
1

x2 − 1
dx =

1

2

∫
1

x− 1
dx− 1

2

∫
1

x+ 1
dx ' 1

2
ln(x− 1)− 1

2
ln(x+ 1) ' 1

2
ln

(
x− 1

x+ 1

)
.

Ainsi,

∫ +∞

2

1

x2 − 1
dx =

1

2

[
lim

x→+∞
ln

(
x− 1

x+ 1

)
− ln

(
2− 1

2 + 1

)]
= −1

2
ln

(
1

3

)
=

1

2
ln(3).

Exercice 2

Représentons graphiquement la région dont on veut calculer l’aire.

-2 -1 1 2

1

2

3

4

5

- X

6

Y

�
�
�
�
�
�
�
�
�y = x

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

y = 2xy = x2

Si f(x) = x2, g(x) = x et h(x) = 2x, d’une part, les points d’intersection des graphiques de f et g ont
pour coordonnées (0, 0) et (1, 1) ; d’autre part, les points d’intersection des graphiques de f et h ont pour
coordonnées (0, 0) et (2, 4). Ainsi, puisque les fonctions à intégrer sont continues sur tout intervalle fermé
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et borné, on a

Aire =

∫ 1

0

(2x− x) dx+

∫ 2

1

(2x− x2) dx

=

∫ 1

0

x dx+

∫ 2

1

(2x− x2) dx

=

[
x2

2

]1
0

+

[
x2 − x3

3

]2
1

=
1

2
+

[
(4− 8

3
)− (1− 1

3
)

]
=

1

2
+ 3− 7

3

=
3 + 18− 14

6

=
7

6
.

2.7 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

f(x) = sin(
√
x) : intégrable sur A.

f(x) = x/(1 + x2) : non intégrable en −∞ donc non intégrable sur A.
f(x) = 1/x2 : non intégrable en 0 donc non intégrable sur[−1, 1].
f(x) = ln(x2) : intégrable sur ]0, 1].
f(x) = ln(x)/(1 + x2) : intégrable sur ]0,+∞[.
f(x) = ln(x)/(1− x2) : intégrable sur ]0, 1[.

Exercice 2

1 16/3−
√

6/2 −10e−2 + e π2/4

1/3 −2 1− π
2 π/8

non intégrable en +∞ 6 + ln(7) π/12 ln(7)/12

Exercice 3

Aire = 2
√

2.

2 4 6

-1
-0.5

0.5
1

-X

6
Y

y = cos(x)

y = sin(x)

Exercice 4

x(t) = 5t2 − t3/3, t ∈ [0, 10].

Accélération nulle si t = 5.



2.8. LISTE 2004/2005 31

2.8 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

Les deux premières fonctions sont intégrables sur A, la troisième est intégrable sur [1,+∞[ mais non sur
]0, 1].

1

4

(
π

6
+

√
3

2
− 1

)
√

3− 1 5
6

√
10

−2

e
−2

−4 6 + ln(7)
π

12
ln(7)/12 ln(2)/2

Exercice 2

L’aire hachurée vaut 4/π.

-1 -0.5 0.5 1
-0.2

0.2

0.4

0.6

0.8

1

1.2

-
X

6
Y

y = sin2(πx/4)

y = cos2(πx/4)

Exercice 3

La première intégrale vaut 2
√

3π/9 et la troisième ln(4)/3.
La deuxième fonction n’est pas intégrable en 1.

Exercice 4

a) Non, la population est définie à une constante additive près.
b) P (1) = e3/3 + 2/3.

Exercice 5

(a) Faux, (b) 1) vrai 2) ∀r, s ∈ R :
∫ +∞
0

(rf(x) + sg(x))dx = r
∫ +∞
0

f(x) dx + s
∫ +∞
0

g(x) dx, (c) faux,
(d) vrai,(e) cf. notes de cours, (f) la largeur de ce découpage vaut 1/2, (g) faux.

2.9 Exercices sur la liste 4 : les nombres complexes

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Dans tout ce qui suit, sauf mention du contraire, x est l’inconnue réelle.

Liste 2002/2003

1. Déterminer les parties réelle et imaginaire, le module et le conjugué de chacun des complexes
suivants.

i,
1

i
, i(−i+ 3),

2i+ 1

2i− 1
,

2i+ 1

−2i+ 1
.
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2. a) Déterminer la forme trigonométrique des complexes suivants :

i, 1 + i,
1

i
.

b) Déterminer les racines quatrièmes du complexe −1. Représenter ces racines.

Liste 2003/2004

1. Déterminer les parties réelle et imaginaire, le module et le conjugué de chacun des complexes
suivants.

i,
1

i
, i(−i+ 3),

2i+ 1

2i− 1
,

2i+ 1

−2i+ 1
, i3,

1

i4
,

1

−i+ 1
,
−3i+ 1

i− 1

2. Résoudre les équations suivantes dans C :

2iz + 3 = 0, z2 + 4 = 0, z2 + z + 1 = 0.

3. Déterminer les racines cubiques du complexe −2 et en donner la représentation géométrique.

4. Déterminer les racines cubiques du complexe 1+i et du complexe −i. En donner une représentation
géométrique.

5. QCM

(a) Le carré d’un nombre complexe est toujours un nombre positif 2 un nombre négatif 2
un nombre imaginaire pur 2 aucune réponse correcte 2

(b) La partie réelle du produit de deux nombres complexes est toujours égale
au produit des parties réelles de ces nombres 2

à la somme des parties réelles de ces nombres 2

à la somme de la partie réelle de l’un et de la partie imaginaire de l’autre 2

au produit de la partie réelle de l’un et de la partie imaginaire de l’autre 2

aucune réponse correcte2

(c) Le conjugué du complexe i/(i+ 1) est −i/(i+ 1) 2 i/(−i+ 1) 2 − i/(−i+ 1) 2
aucune réponse correcte 2

Liste 2004/2005

1. Déterminer les parties réelle et imaginaire, le module et le conjugué de chacun des complexes
suivants.

i+ 1, (1 + i)2, (2i+ 1)(−i+ 3),
2i+ 1

i+ 1

2. Résoudre les équations suivantes dans C et en représenter les solutions :

iz2 + 1 = 0, 4z2 + 1 = 0, z2 − z + 1 = 0.

3. Déterminer les racines cubiques du complexe i et en donner la représentation géométrique.

4. Déterminer les racines quatrièmes du complexe −16. En donner une représentation géométrique.

Déterminer les racines carrées et les racines quatrièmes du complexe (i
√

3 − 1)/2. En donner la
représentation géométrique.

2.10 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
Rappelons tout d’abord que si z = a + ib (a, b ∈ R) alors sa partie réelle, notée <z, est a, sa partie
imaginaire, notée =z, est b, son module, noté |z|, est

√
a2 + b2 et son conjugué, noté z, est a − ib.

Rappelons aussi que z.z = |z|2.



2.10. LISTE 2002/2003 33

Ecrivons les différentes expressions données sous la forme a+ ib ; on a
1) i = 0 + 1i
2) 1/i = −i si on multiplie numérateur et dénominateur par −i, conjugué de i
3) i(−i+ 3) = −i2 + 3i = 1 + 3i puisque i2 = −1

4)
2i+ 1

2i− 1
=

(1 + 2i)(−1− 2i)

(−1)2 + 22
=
−1− 4i− 4i2

5
=
−1 + 4− 4i

5
=

3− 4i

5
si on multiplie numérateur et

dénominateur par −1− 2i, conjugué de −1 + 2i

5)
2i+ 1

−2i+ 1
=

(1 + 2i)(1 + 2i)

12 + (−2)2
=

1 + 4i+ 4i2

5
=

1− 4 + 4i

5
=
−3 + 4i

5
(même démarche que ci-dessus).

Ainsi,

z <z =z |z| z
i 0 1 1 −i

1/i 0 −1 1 i

i(−i+ 3) 1 3
√

10 1− 3i

2i+ 1

2i− 1
3/5 −4/5 1 (3 + 4i)/5

2i+ 1

−2i+ 1
−3/5 4/5 1 (−3− 4i)/5

Exercice 2

a) Forme trigonométrique d’un nombre complexe
— La forme trigonométrique de i est eiπ/2 car i = 0+ i . 1 et donc r =

√
02 + 12 = 1. De plus, comme

cos(θ) = 0 et sin(θ) = 1 avec θ ∈ [0, 2π[, on a θ = π/2.
— Considérons z = 1 + i ; on a |z| =

√
12 + 12 =

√
2 et, dès lors, z =

√
2
(√

2/2 + i
√

2/2
)
. Ainsi,

cos(θ) = sin(θ) =
√

2/2 avec θ ∈ [0, 2π[, ce qui donne θ = π/4. Pour conclure, la forme trigo-
nométrique de 1 + i est donc

√
2 eiπ/4.

— Le complexe 1/i = −i s’écrit sous forme trigonométrique ei(3π/2) puisque r =
√

02 + (−1)2 = 1,
cos(θ) = 0 et sin(θ) = −1 avec θ ∈ [0, 2π[.

b) La forme trigonométrique de −1 est eiπ. Ainsi, ses racines quatrièmes sont données par zk = ei(π+2kπ)/4

avec k = 0, 1, 2, 3. Dès lors, on a

z0 = ei(π/4), z1 = ei(3π/4), z2 = ei(5π/4) et z3 = ei(7π/4).

Ces racines quatrièmes se représentent sur le cercle centré à l’origine de rayon 1 et sont les sommets d’un
carré, points communs au cercle et aux droites d’équation y = x et y = −x.

-
X

−1 1

6
Y

−1

1 rz0rz1

r
z3

r
z2
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2.11 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

z <z =z |z| z

i 0 1 1 −i

1
i 0 −1 1 i

i(−i+ 3) 1 3
√

10 1− 3i

z <z =z |z| z

(2i+ 1)/(2i− 1) 3/5 −4/5 1 (3 + 4i)/5

(2i+ 1)/(−2i+ 1) −3/5 4/5 1 (−3− 4i)/5

i3 0 −1 1 i

z <z =z |z| z

1/i4 1 0 1 1

1/(−i+ 1) 1/2 1/2
√

2/2 (1− i)/2

(−3i+ 1)/(i− 1) −2 1
√

5 −2− i

Exercice 2

S = {3i/2} S = {−2i, 2i} S = {(−1− i
√

3)/2, (−1 + i
√

3)/2}

Exercice 3

z0 = 3
√

2 ei(π/3), z1 = 3
√

2 eiπ, z2 = 3
√

2 ei(5π/3).
Représentation : sommets du triangle équilatéral inscrit dans le cercle centré à l’origine et de rayon 3

√
2.

Un des sommets appartient à l’axe des X, son abscisse étant négative.

Exercice 4

Pour 1 + i : z0 = 6
√

2 ei(π/12), z1 = 6
√

2 ei(3π/4), z2 = 6
√

2 ei(17π/12).
Représentation : sommets du triangle équilatéral inscrit dans le cercle centré à l’origine et de rayon 6

√
2.

Un des sommets appartient à la deuxième bissectrice et est situe dans le second quadrant.

Pour −i : z0 = ei(π/2), z1 = ei(7π/6), z2 = ei(11π/6).
Représentation : sommets du triangle équilatéral inscrit dans le cercle centré à l’origine et de rayon 1. Un
des sommets appartient à l’axe des Y , son ordonnée étant positive.

Exercice 5 : QCM

(a) aucune réponse correcte
(b) aucune réponse correcte
(c) −i/(−i+ 1)
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2.12 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

z <z =z |z| z

i+ 1 1 1
√

2 1− i

(1 + i)2 0 2 2 −2i

(2i+ 1)(−i+ 3) 5 5 5
√

2 5− 5i

(2i+ 1)/(i+ 1) 3/2 1/2
√

10/2 (3− i)/2

Exercice 2

S =
{
−
√

2(1 + i)/2,
√

2(1 + i)/2
}

S = {−i/2, i/2} S =
{

(1− i
√

3)/2, (1 + i
√

3)/2
}

Exercice 3

Les racines cubiques de i sont z0 = ei(π/6), z1 = ei(5π/6), z2 = ei(3π/2). Ce sont les sommets du triangle
équilatéral inscrit dans le cercle trigonométrique dont le sommet correspondant à z2 est le point de coor-
données (0,−1).

Exercice 4

Les racines quatrièmes de −16 sont z0 = 2ei(π/4), z1 = 2ei(3π/4), z2 = 2ei(5π/4), z3 = 2ei(7π/4). Ce sont
les sommets du carré inscrit dans le cercle centré à l’origine et de rayon 2, z0 correspondant au point de
coordonnées (

√
2,
√

2).
Les racines carrées de (i

√
3 − 1)/2 sont z0 = ei(π/3), z1 = ei(4π/3). Ce sont les points diamétralement

opposés du cercle trigonométrique dont l’un a pour coordonnées (1/2,
√

3/2).
Les racines quatrièmes de (i

√
3− 1)/2 sont z0 = ei(π/6), z1 = ei(2π/3), z2 = ei(7π/6), z3 = ei(5π/3). Ce sont

les sommets du carré inscrit dans le cercle trigonométrique, z0 correspondant au point de coordonnées
(
√

3/2, 1/2).

2.13 Exercices sur les listes 5 et 6 : les équations différentielles

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Liste 2002-2003

1. Résoudre les équations suivantes

1) iDf(x) + 3f(x) = 2x+ i 2) Df(x) = cos(x) + 2f(x)
3) 2Df(x) + 4f(x) = e−2x 4) D2f(x) +Df(x) = xex

5) D2f(x) + 2Df(x) + f(x) = 1 + sin(x) 6) D2f(x) + 4f(x) = cos(2x)

Dans le cas 1), quelle est la solution qui s’annule en 1 ?

Dans le cas 4), quelle est la solution qui vaut 1 en 1 et dont la dérivée s’annule en 1 ?

Dans le cas 6), quelle est la solution qui s’annule en 0, ainsi que sa dérivée ?
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Liste 2003-2004

1. Soit r > 0. Représenter graphiquement la fonction y(x) =
√
r2 − x2, x ∈ [−r, r] et montrer qu’elle

vérifie l’équation différentielle
yDxy + x = 0, x ∈]− r, r[.

2. Résoudre les équations différentielles ou les systèmes suivants, en spécifiant sur quel intervalle on
se place

a)

{
iDf(x) + 2f(x) = 3i
f(1) = i

b) Df(x) + f(x) = 1/(1 + e2x)

c)

 D2f(x) + 9Df(x) = x
f(1) = 1
Df(1) = 0

d)

 D2f(x) + 9f(x) = x
f(0) = 0
Df(0) = 0

e) 9D2f(x) + 6Df(x) + f(x) = 1 + xex f) 9D2f(x) + 6Df(x) + f(x) = e−x/3

g) iD2f(x)− f(x) = ex h) D2f(x) + 4f(x) = cos(x)

i) D2f(x) + 4f(x) = cos2(x)

Liste 2004-2005

1. A proposer aux étudiants.
— L’équation différentielle (Dty)2 = 4(y + 1) est -elle linéaire ?

Montrer que la fonction g(t) = t2 − 2t, (t ∈ R) vérifie le système (Dty)2 = 4(y + 1)
y(0) = 0
y(2) = 0

— Dans l’étude des solutions des équations différentielles linéaires à coefficients constants, on a
rencontré des fonctions fondamentales que l’on a appelées fonctions du type “exponentielle
polynôme”. Comment s’écrit explicitement une telle fonction ?

2. Résoudre les équations différentielles ou les systèmes suivants, en spécifiant sur quel intervalle on
se place

a)

{
i3Df(x) + 2f(x) = 3i
f(1) = i2

b)

 4D2f(x) +Df(x) = x
f(1) = 1
Df(1) = 0

c)

 4D2f(x) + f(x) = x
f(0) = 0
Df(0) = 0

d) D2f(x) +Df(x)− 2f(x) = xex + e2x

e) 4D2f(x) + f(x) = 1 + sin(x) + sin2(x) f) D2f(x) + 4Df(x) + 4f(x) = 1 + e−2x

2.14 Résolution des exercices de la “liste type 2002/2003”

Exercice 1

1. Résolvons l’équation d’ordre 1 homogène iDf(x) + 3f(x) = 0. L’équation caractéristique est
iz + 3 = 0 et son seul zéro est 3i. Dès lors, les solutions de l’équation homogène sont les fonctions

fH(x) = C e3ix, x ∈ R
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où C est une constante arbitraire complexe.

Cherchons à présent une solution particulière sur R puisque le second membre x 7→ g(x) = 2x+ i
est une fonction continue sur R. Comme on peut écrire g(x) sous la forme (2x + i) . e0x, produit
d’un polynôme du premier degré et d’une exponentielle dont le coefficient 0 de l’argument n’est
pas solution de l’équation caractéristique, il existe une solution de la forme fP (x) = Ax+B où A
et B doivent être déterminés. Puisque DfP (x) = A, on a

iDfP (x) + 3fP (x) = 2x+ i⇔ iA+ 3Ax+ 3B = 2x+ i⇔
{

3A = 2
iA+ 3B = i

⇔

{
A = 2/3

B = i/9
.

Ainsi, on obtient une solution particulière

fP (x) =
2x

3
+
i

9
, x ∈ R

et les solutions de l’équation donnée sont les fonctions

f(x) = C e3ix +
2x

3
+
i

9
, x ∈ R

où C est une constante arbitraire complexe.

Déterminons la solution f qui s’annule en 1 c’est-à-dire telle que f(1) = 0. On a Ce3i + 2/3 + i/9 = 0⇔
C e3i + (6 + i)/9 = 0⇔ C = (−6− i) e−3i/9. La solution cherchée est donc la fonction

f(x) = −6 + i

9
e3i(x−1) +

2x

3
+
i

9
, x ∈ R.

2. Résolvons l’équation d’ordre 1 homogène Df(x) − 2f(x) = 0. L’équation caractéristique est
z − 2 = 0 et son seul zéro est 2. Dès lors, les solutions de l’équation homogène sont les fonc-
tions

fH(x) = C e2x, x ∈ R

où C est une constante arbitraire complexe.

Cherchons maintenant une solution particulière sur R, le second membre x 7→ g(x) = cos(x)
étant une fonction continue sur R. De plus, comme l’équation est à coefficients réels et que
cos(x) = <(eix), une solution particulière sera donnée par la partie réelle d’une solution par-
ticulière de DF (x) − 2 F (x) = eix. Le second membre de cette équation est l’exponentielle
polynôme 1 . eix, produit d’un polynôme de degré 0 et d’une exponentielle dont le coefficient i de
l’argument n’est pas solution de l’équation caractéristique. Il existe donc une solution de la forme
F (x) = A eix où A doit être déterminé. Puisque DF (x) = Ai eix, on a

DF (x)− 2F (x) = eix ⇔ Ai eix − 2A eix = eix ⇔ (−2 + i)A = 1⇔ 5A = −2− i⇔ A =
−2− i

5
.

Ainsi, F (x) =
−2− i

5
eix =

(
−2

5
− i

5

)
(cos(x) + i sin(x)) et, dès lors,

fP (x) = <F (x) = −2

5
cos(x) +

1

5
sin(x), x ∈ R.

En conclusion, les solutions de l’équation donnée sont les fonctions

f(x) = C e2x − 2

5
cos(x) +

1

5
sin(x), x ∈ R

où C est une constante arbitraire complexe.
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3. Résolvons l’équation d’ordre 1 homogène 2Df(x) + 4f(x) = 0. L’équation caractéristique est
2z+ 4 = 0 et son seul zéro est −2. Dès lors, les solutions de l’équation homogène sont les fonctions

fH(x) = C e−2x, x ∈ R

où C est une constante arbitraire complexe.

Cherchons à présent une solution particulière sur R puisque le second membre x 7→ g(x) = e−2x

est une fonction continue sur R. Comme on peut écrire g sous la forme de l’exponentielle polynôme
1 . e−2x, produit d’un polynôme de degré 0 et d’une exponentielle dont le coefficient −2 de
l’argument est solution simple de l’équation caractéristique, il existe une solution de la forme
fP (x) = Ax e−2x où A doit être déterminé. Puisque DfP (x) = A e−2x − 2Ax e−2x, on a

2DfP (x) + 4fP (x) = e−2x ⇔ (2A− 4Ax)e−2x + 4Ax e−2x = e−2x ⇔ 2A = 1⇔ A =
1

2
.

Ainsi, on obtient une solution particulière

fP (x) =
x

2
e−2x, x ∈ R

et les solutions de l’équation donnée sont les fonctions

f(x) =
(
C +

x

2

)
e−2x, x ∈ R

où C est une constante arbitraire complexe.

4. Résolvons l’équation d’ordre 2 homogène D2f(x) + Df(x) = 0. L’équation caractéristique est
z2 + z = 0 dont les zéros sont −1 et 0. Dès lors, les solutions de l’équation homogène sont les
fonctions

fH(x) = C1 e
0x + C2 e

−x = C1 + C2 e
−x, x ∈ R

où C1 et C2 sont des constantes arbitraires complexes.

Cherchons à présent une solution particulière sur R puisque le second membre x 7→ g(x) = x ex

est une fonction continue sur R. Comme g est une exponentielle polynôme, produit d’un polynôme
du premier degré et d’une exponentielle dont le coefficient 1 de l’argument n’est pas solution
de l’équation caractéristique, il existe une solution de la forme fP (x) = (Ax + B) ex où A et
B doivent être déterminés. Puisque DfP (x) = A ex + (Ax + B) ex = (Ax + A + B) ex et
D2f(x) = A ex + (Ax+A+B) ex = (Ax+ 2A+B) ex, on a

D2fP (x) +DfP (x) = x ex ⇔ (2Ax+ 3A+ 2B) ex = x ex ⇔
{

2A = 1
3A+ 2B = 0

⇔

{
A = 1/2

B = −3/4
.

Ainsi, on obtient une solution particulière

fP (x) =

(
x

2
− 3

4

)
ex, x ∈ R

et les solutions de l’équation donnée sont les fonctions

f(x) = C1 + C2 e
−x +

(
x

2
− 3

4

)
ex, x ∈ R

où C1 et C2 sont des constantes arbitraires complexes.
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Déterminons la solution qui vaut 1 en 1 et dont la dérivée s’annule en 1 c’est-à-dire la solution f
telle que f(1) = 1 et Df(1) = 0. Comme Df(x) = −C2 e

−x + (1/2 + x/2− 3/4) ex, on a{
f(1) = 1
Df(1) = 0

⇔
{
C1 + C2 e

−1 − e/4 = 1
−C2 e

−1 + e/4 = 0
⇔
{
C1 = 1
C2 = e2/4

;

la solution cherchée est donc la fonction

f(x) = 1 +
e2−x

4
+

(
x

2
− 3

4

)
ex, x ∈ R.

5. Résolvons l’équation d’ordre 2 homogène D2f(x) + 2Df(x) + f(x) = 0. L’équation caractéristique
est z2 + 2z + 1 = 0 laquelle est équivalente à (z + 1)2 = 0, équation qui admet −1 comme zéro
double. Dès lors, les solutions de l’équation homogène sont les fonctions

fH(x) = (C1x+ C2) e−x, x ∈ R

où C1 et C2 sont des constantes arbitraires complexes.

Cherchons une solution particulière sur R puisque le second membre x 7→ g(x) = 1 + sin(x) est
une fonction continue sur R. Comme g est une somme de deux fonctions, cherchons tout d’abord
une solution particulière de D2f + 2Df +f = 1 ; on voit immédiatement que la fonction constante
1 convient. Cherchons à présent une solution particulière de D2f(x) + 2Df(x) + f(x) = sin(x).
Comme l’équation est à coefficients réels et que sin(x) = =(eix), une solution particulière sera
donnée par la partie imaginaire d’une solution particulière de D2F (x) + 2DF (x) +F (x) = eix. Le
second membre de cette équation est l’exponentielle polynôme 1.eix, produit d’un polynôme de
degré 0 et d’une exponentielle dont le coefficient i de l’argument n’est pas solution de l’équation
caractéristique. Il existe donc une solution de la forme F (x) = A eix où A doit être déterminé.
Puisque DF (x) = Ai eix et D2f(x) = −A eix, on a

D2F (x) + 2DF (x) +F (x) = eix ⇔ (−A+ 2Ai+A) eix = eix ⇔ 2iA = 1⇔ 2A = −i⇔ A = −i/2.

Ainsi,

F (x) = − i
2
eix = − i

2
(cos(x) + i sin(x))

et, dès lors, une solution particulière fP de l’équation de départ est

fP (x) = 1 + =F (x) = 1− 1

2
cos(x), x ∈ R.

En conclusion, les solutions de l’équation donnée sont les fonctions

f(x) = (C1x+ C2) e−x + 1− 1

2
cos(x), x ∈ R

où C1 et C2 sont des constantes arbitraires complexes.

6. Résolvons l’équation d’ordre 2 homogène D2f(x) + 4f(x) = 0. L’équation caractéristique est
z2 + 4 = 0 ; elle est équivalente à l’équation z2− 4i2 = 0 dont les zéros sont 2i et −2i. Dès lors, les
solutions de l’équation homogène sont les fonctions

fH(x) = C1e
2ix + C2e

−2ix, x ∈ R

où C1, C2 sont des constantes complexes ou, ce qui revient au même, les fonctions

fH(x) = C1 cos(2x) + C2 sin(2x), x ∈ R

où C1 et C2 sont des constantes arbitraires complexes.
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Cherchons à présent une solution particulière sur R puisque le second membre x 7→ g(x) = cos(2x)
est une fonction continue sur R. Les coefficients de l’équation étant réels et cos(2x) étant la partie
réelle de e2ix, une solution particulière sera donnée par la partie réelle d’une solution particulière
de D2F (x) + 4F (x) = e2ix. Le second membre de cette équation s’écrit 1 . e2ix, produit d’un
polynôme de degré 0 et d’une exponentielle dont le coefficient 2i de l’argument est solution simple
de l’équation caractéristique. Il existe donc une solution de la forme F (x) = Ax e2ix où A doit
être déterminé. En appliquant la formule de Leibniz, on a

D2F (x) = C0
2D

0(Ax).D2(e2ix) + C1
2D(Ax).D(e2ix) + C2

2D
2(Ax).D0(e2ix) = −4Axe2ix + 4iAe2ix

et

D2F (x) + 4F (x) = e2ix ⇔ (−4Ax+ 4iA+ 4Ax) e2ix = e2ix ⇔ 4iA = 1⇔ 4A = −i⇔ A =
−i
4
.

Ainsi,

F (x) =
−ix

4
e2ix = − ix

4
(cos(2x) + i sin(2x))

et, dès lors, une solution particulière fP de l’équation de départ est donnée par

fP (x) = <F (x) =
x

4
sin(2x), x ∈ R.

En conclusion, les solutions de l’équation donnée sont les fonctions

f(x) = C1 cos(2x) +
(
C2 +

x

4

)
sin(2x), x ∈ R

où C1 et C2 sont des constantes arbitraires complexes.

Cherchons la solution qui s’annule en 0, ainsi que sa dérivée c’est-à-dire la solution telle que
f(0) = 0 et Df(0) = 0. Comme Df(x) = −2C1 sin(2x) + sin(2x)/4 + 2 (C2 + x/4) cos(2x), on a{

f(0) = 0
Df(0) = 0

⇔
{
C1 = 0
2C2 = 0

⇔
{
C1 = 0
C2 = 0

;

la solution cherchée est donc la fonction

f(x) =
x

4
sin(2x), x ∈ R.

2.15 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

Représentation graphique : points d’ordonnée positive du demi-cercle centré à l’origine et de rayon r.

Exercice 2

a) f(x) = (−i/2)e2i(x−1) + 3i/2, x ∈ R.

b) f(x) = e−x(c+ arctan(ex)), x ∈ R, c constante complexe arbitraire.

c) f(x) = 1379/1454 + 8e9(1−x)/729 + x2/18− x/81, x ∈ R.

d) f(x) = − sin(3x)/27 + x/9, x ∈ R.

e) f(x) = (c1x+ c2)e−x/3 + (x/16− 3/32)ex + 1, x ∈ R, c1 et c2 constantes complexes arbitraires.

f) f(x) = (c1x+ c2 + x2/18)e−x/3, x ∈ R, c1 et c2 constantes complexes arbitraires.

g) f(x) = c1e
(
√
2/2)(−1+i)x+c2e

(
√
2/2)(1−i)x−(1+i)/2 ex, x ∈ R, c1 et c2 constantes complexes arbitraires.

h) f(x) = c1 cos(2x) + c2 sin(2x) + cos(x)/3, x ∈ R, c1 et c2 constantes complexes arbitraires.

i) f(x) = c1 cos(2x) + (x/8 + c2) sin(2x) + 1/8, x ∈ R, c1 et c2 constantes complexes arbitraires.
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2.16 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

L’équation différentielle n’est pas linéaire.

Exercice 2

a) f(x) = (−1− 3i/2)e2i(1−x) + 3i/2, x ∈ R.
b) f(x) = x2/2− 4x+ 33/2− 12 e(1−x)/4, x ∈ R
c) f(x) = x− 2 sin (x/2) , x ∈ R
d) f(x) = C1e

−2x +
(
C2 + x2/6− x/9

)
ex + e2x/4, x ∈ R où C1, C2 sont des constantes complexes arbi-

traires.

e) f(x) = C1 cos (x/2) +C2 sin (x/2) + 3/2− sin(x)/3 + cos(2x)/30, x ∈ R où C1, C2 sont des constantes
complexes arbitraires.
f) f(x) =

(
C1x+ C2 + x2/2

)
e−2x, x ∈ R où C1, C2 sont des constantes complexes arbitraires.
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Chapitre 3

Calcul matriciel

3.1 Exercices sur les listes 6-7-8

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Liste 2002-2003

1. Soient les matrices

A =

(
1 0 −1
i 2 i+ 1

)
, B =

 1 −i
1/i 0
−1 1

 .

Calculer (si possible)

iA, A+B, A+ B̃, AA∗, AB, BA,BB.

2. Calculer le déterminant des matrices suivantes.(
1 −1
−2 5

)
,

(
i i
−i i

)
,

 1 0 −1
1 1 1
−1 1 1

 .

3. Factoriser le déterminant des matrices suivantes.(
1− x 2

2 1− x

)
,

 x x2 x3

y y2 y3

z z2 z3

 ,

 −a− x a 0
b −2b− x b
0 a −a− x


4. Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes.

(
1 −1
−1 2

)
,

 1 0 1
0 1 −1
1 1 1

 .

5. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi ? Si elles le sont, en déterminer une forme diagonale, ainsi qu’une
matrice inversible qui y conduit.

(
1 1
2 2

)
,

(
1 1
0 1

)
,

(
1 i
−i 1

)
,

 1 1 0
0 1 0
0 0 1

 ,

 0 −1 1
3 2 −3
1 −1 0

 .

43
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6. QCM + justifier la réponse
— Si A est une matrice carrée telle que A2 = 0, alors A est la matrice nulle Vrai 2 Faux 2

— Le déterminant d’une matrice carrée dont les éléments sont des complexes est
un complexe 2 une matrice 2 un polynôme 2 aucune proposition correcte 2

— Si A et B sont des matrices carrées de même dimension qui vérifient AB = A, alors B est la
matrice identité Vrai 2 Faux 2

— Si A est une matrice qui vérifie A = A∗, si c ∈ C et si on pose B = cA, alors B = B∗

Vrai 2 Faux 2

— Si M est une matrice qui vérifie MM̃ = 1, alors M admet un inverse Vrai 2 Faux 2

— Si A,B sont deux matrices de même format, alors on a A+B = B +A Vrai 2 Faux 2

— Si A,B sont deux matrices carrées de même dimension, alors on a (A+B)2 = A2 + 2AB+B2

Vrai 2 Faux 2

— Les valeurs propres d’une matrice carrée réelle sont toujours des nombres réels
Vrai 2 Faux 2

— Une matrice carrée peut être inversible et avoir une valeur propre nulle Vrai 2 Faux 2

— La somme de deux vecteurs propres de même valeur propre est encore un vecteur propre de
même valeur propre Vrai 2 Faux 2

Liste 2003-2004

1. Soient les matrices

A =

 −2 2i
−1/i3 0
−1 1

 , B =

(
1 0 −1
i 2 i+ 1

)
, C =

(
−i+ 2 3

4i −i

)
.

Si possible, effectuer les opérations suivantes. Si cela ne l’est pas, en expliquer la raison.

iA, C∗, A+B, A+ B̃, AA∗, AB, BA, CB, CA.

2. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

(
i −1
−2 5i

)
,

 −1 0 −2
−1 1 1
−1 −1 1

 ,

 −1 4 −2
1 −1 1
1 −1 1

 .

3. Le déterminant de la matrice suivante est un polynôme en x. Factoriser ce polynôme.(
1− x 1

2 2− x

)
.

4. Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes.

(
1 1
i 2i

)
,

 1 1 1
0 1 −1
1 0 1

 .

5. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi ? Si elle le sont, en déterminer une forme diagonale, ainsi qu’une
matrice inversible qui y conduit.

(
1 1
2 2

)
,

(
1 0
1 1

)
,

(
1 i
−i 1

)
,

 1 0 0
0 1 0
0 1 1

 ,

 3 −2 4
−2 6 2
4 2 3

 .

6. Répondre aux questions suivantes et justifier la réponse.
— Si A est une matrice carrée telle que A2 = 0, alors A est la matrice nulle Vrai 2 Faux 2



3.1. EXERCICES SUR LES LISTES 6-7-8 45

— Si M est une matrice qui vérifie MM̃ = 1, alors M admet un inverse Vrai 2 Faux 2

— Si A,B sont deux matrices de même format, alors on a A+B = B +A Vrai 2 Faux 2

— Si A,B sont deux matrices carrées de même dimension, alors on a (A+B)2 = A2 + 2AB+B2

Vrai 2 Faux 2

— Les valeurs propres d’une matrice carrée réelle sont toujours des nombres réels
Vrai 2 Faux 2

— Une matrice carrée peut être inversible et avoir une valeur propre nulle Vrai 2 Faux 2

— La somme de deux vecteurs propres de même valeur propre est encore un vecteur propre de
même valeur propre Vrai 2 Faux 2

— La somme de deux valeurs propres d’une même matrice est encore une valeur propre de cette
matrice Vrai 2 Faux 2

— Si le complexe λ0 est une valeur propre de la matrice M alors λ0 est une valeur propre de la
matrice M Vrai 2 Faux 2

— Si un complexe est une valeur propre d’une matrice, alors il est aussi valeur propre de la matrice
transposée Vrai 2 Faux 2

Liste 2004/2005

1. Soient les matrices

A =

(
−2i 2i4 (1 + i)2/i3

0 −1 1− i

)
, B =

(
1 0 −1
i 2 i+ 1

)
, C =

(
−3i+ 1 3

4i −i

)
.

Si possible, effectuer les opérations suivantes. Si cela ne l’est pas, en expliquer la raison.

ĩA, (iB)∗, A+B, A+ B̃, AA∗, AB, BA, CB.

2. Déterminer la forme générale des matrices qui commutent avec la matrice

(
2 0
0 2

)
(resp. avec

la matrice

(
2 0
0 1

)
, avec la matrice

(
2 0
1 2

)
).

3. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

(
i+ 1 1
−2i 5

)
,

1

3

 −2 1 2
2 −2 1
1 2 2

 .

4. Le déterminant des matrices suivantes est un polynôme en x. Factoriser ce polynôme en un produit
de facteurs du premier degré.(

2− x −4
1 x+ 1

)
,

(
2− x −4
−1 x+ 1

)
.

5. Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne α ∈ R).

(
−1 1
0 i

)
,

(
cos(α) sin(α)
sin(α) − cos(α)

)
,

 1 2 −2
−1 3 0
0 −2 1

 .

6. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi ? Si elles le sont, en déterminer une forme diagonale, ainsi qu’une
matrice inversible qui y conduit.

(
2 2
2 2

)
,

(
2 0
2 2

)
,

(
2 0
0 2

)
,

(
1 i+ 1

1 + i 1

)
,

 1 1 0
0 1 0
0 0 1

 ,

 1 −1 −1
−1 1 −1
−1 −1 1

 .
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7. Répondre aux questions suivantes et justifier la réponse.
— Si A est une matrice carrée telle que A2 = A, alors A est la matrice nulle ou est la matrice

identité
Vrai 2 Faux 2

— Si M est une matrice carrée qui vérifie MM̃ = 1, alors M vérifie aussi M̃M = 1
Vrai 2 Faux 2

— Si A,B sont deux matrices de même format, alors on a A(A+B) = A2 +AB
Vrai 2 Faux 2

— Si A,B sont deux matrices carrées de même dimension, alors on a A2−B2 = (A−B) (A+B)
Vrai 2 Faux 2

— Une matrice carrée peut être inversible et avoir une valeur propre nulle Vrai 2 Faux 2

— La somme de deux vecteurs propres de même valeur propre est encore un vecteur propre de
même valeur propre Vrai 2 Faux 2

— La somme de deux vecteurs propres de valeur propre nulle est encore un vecteur propre de
valeur propre nulle Vrai 2 Faux 2

— La trace du produit de deux matrices carrées de même dimension reste la même si on permute
l’ordre des facteurs du produit. Vrai 2 Faux 2

3.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
• On a

iA =

(
i 0 −i
−1 2i −1 + i

)
.

• La matrice A est une matrice de format 2×3 tandis que B est une matrice de format 3×2. Ces matrices
n’ayant pas le même format, il est impossible de les additionner.

• Puisque B est une matrice de format 3× 2, B̃ est de format 2× 3 et peut être additionné à A, matrice
de même format. On a

A+ B̃ =

(
1 0 −1
i 2 1 + i

)
+

(
1 1/i −1
−i 0 1

)
=

(
2 1/i −2
0 2 2 + i

)
.

• Puisque A est une matrice de format 2 × 3, A∗ est une matrice de format 3 × 2 ; le produit AA∗ est
donc possible et donne une matrice de format 2× 2. On a

Ã =

 1 i
0 2
−1 1 + i

 donc A∗ =

 1 −i
0 2
−1 1− i

 ;

ainsi,

AA∗ =

(
1 0 −1
i 2 1 + i

) 1 −i
0 2
−1 1− i

 =

(
2 −1
−1 7

)
.

• Le produit AB est possible puisque A est de format 2 × 3 et B de format 3 × 2 ; le produit est une
matrice de format 2× 2. On a

AB =

(
1 0 −1
i 2 1 + i

) 1 −i
−i 0
−1 1

 =

(
2 −1− i

−1− 2i 2 + i

)
.

• Le produit BA est possible puisque B est de format 3 × 2 et A de format 2 × 3 ; le produit est une
matrice de format 3× 3. On a

BA =

 1 −i
−i 0
−1 1

( 1 0 −1
i 2 1 + i

)
=

 2 −2i −i
−i 0 i
−1 + i 2 2 + i

 .
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• Le nombre de colonnes de B est différent du nombre de lignes de B ; le produit BB est donc impossible.

Exercice 2

• On a det

(
1 −1
−2 5

)
= 1.5− (−1).(−2) = 3.

• On a det

(
i i
−i i

)
= i2 + i2 = −2.

• On a

det

 1 0 −1
1 1 1
−1 1 1

 =
0 1 0
1 1 1
−1 1 1

si on remplace L1 par L1 + L3

= (−1)
1 1
−1 1

= −2 en développant le déterminant selon la première ligne.

Exercice 3

• On a det

(
1− x 2

2 1− x

)
= (1− x)2 − 4 = (1− x− 2)(1− x+ 2) = (−x− 1)(3− x).

• On a

det

 x x2 x3

y y2 y3

z z2 z3


= xyz

1 x x2

1 y y2

1 z z2
mise en évidence du facteur x sur L1, y sur L2 et z sur L3

= xyz
0 x− z x2 − z2
0 y − z y2 − z2
1 z z2

si on remplace L1 par L1 − L3 et L2 par L2 − L3

= xyz(x− z)(y − z)
0 1 x+ z
0 1 y + z
1 z z2

mise en évidence du facteur

{
x− z sur L1

y − z sur L2

= xyz(x− z)(y − z) 1 x+ z
1 y + z

en développant le déterminant selon la première colonne

= xyz(x− z)(y − z)(y + z − x− z)
= xyz(x− z)(y − z)(y − x).

• On a det

 −a− x a 0
b −2b− x b
0 a −a− x


=

−x a 0
−x −2b− x b
−x a −a− x

si on remplace C1 par C1 + C2 + C3

=
0 0 a+ x
−x −2b− x b
−x a −a− x

si on remplace L1 par L1 − L3

= (a+ x)
−x −2b− x
−x a

en développant le déterminant selon la première ligne

= −x(a+ x)
1 −2b− x
1 a

mise en évidence du facteur (−x) sur C1

= −x(a+ x)(a+ 2b+ x).
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Exercice 4

• Posons A =

(
1 −1
−1 2

)
. Puisque detA = 2− 1 = 1 6= 0, la matrice A est inversible. Déterminons les

cofacteurs (A)i,j des éléments (A)i,j , (i, j = 1, 2) de A.
On a (A)1,1 = 2, (A)1,2 = 1, (A)2,1 = 1, (A)2,2 = 1. On obtient ainsi

A−1 =
1

detA
Ã =

(
2 1
1 1

)

• Posons A =

 1 0 1
0 1 −1
1 1 1

. On a

detA =
1 0 1
0 1 −1
0 1 0

si on remplace L3 par L3 − L1

=
1 −1
1 0

en développant le déterminant selon la première colonne

= 1.

Puisque detA 6= 0, la matrice inverse existe.
Déterminons les cofacteurs (A)i,j des éléments (A)i,j , (i, j = 1, 2, 3) de A. On a

(A)1,1 =
1 −1
1 1

= 2; (A)1,2 = (−1)
0 −1
1 1

= −1; (A)1,3 =
0 1
1 1

= −1;

(A)2,1 = (−1)
0 1
1 1

= 1; (A)2,2 =
1 1
1 1

= 0; (A)2,3 = (−1)
1 0
1 1

= −1;

(A)3,1 =
0 1
1 −1

= −1; (A)3,2 = (−1)
1 1
0 −1

= 1; (A)3,3 =
1 0
0 1

= 1.

Ainsi, on obtient

A−1 =
1

detA
Ã =

 2 1 −1
−1 0 1
−1 −1 1



Exercice 5

5.1) Considérons la matrice A =

(
1 1
2 2

)
.

— Le polynôme caractéristique de A est

det(A− λ 1) =
1− λ 1

2 2− λ = (1− λ) (2− λ)− 2 = 2− 3λ+ λ2 − 2 = λ2 − 3λ = λ(λ− 3).

Les valeurs propres de A sont donc 0 et 3 ; ces valeurs propres étant simples, la matrice A est
diagonalisable.

— Cherchons les vecteurs propres associés à la valeur propre 0 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 0 1)X = 0. On a

(A− 0 1)X =

(
1 1
2 2

)(
x
y

)
= 0⇔

{
x+ y = 0
2x+ 2y = 0

⇔ x+ y = 0⇔ X = x

(
1
−1

)
.

Les vecteurs propres associés à la valeur propre 0 sont donc les vecteurs

X = c

(
1
−1

)
, c ∈ C0.
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— Cherchons les vecteurs propres associés à la valeur propre 3 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 3 1)X = 0. On a

(A− 3 1)X =

(
−2 1
2 −1

)(
x
y

)
= 0⇔

{
−2x+ y = 0
2x− y = 0

⇔ 2x− y = 0⇔ X = x

(
1
2

)
.

Les vecteurs propres associés à la valeur propre 3 sont donc les vecteurs

X = c

(
1
2

)
, c ∈ C0.

— La matrice S =

(
1 1
−1 2

)
est telle que S−1AS =

(
0 0
0 3

)
.

5.2) Soit la matrice A =

(
1 1
0 1

)
.

— Le polynôme caractéristique de A est

det(A− λ 1) =
1− λ 1

0 1− λ = (1− λ)2.

La matrice A possède donc la valeur propre double 1.
— Cherchons les vecteurs propres associés cette valeur propre 1 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 1)X = 0. On a

(A− 1)X =

(
0 1
0 0

)(
x
y

)
= 0⇔ y = 0⇔ X = x

(
1
0

)
.

Les vecteurs propres associés à cette valeur propre sont donc les vecteurs

X = c

(
1
0

)
, c ∈ C0.

Comme ils sont tous multiples du vecteur

(
1
0

)
, deux vecteurs propres sont toujours linéairement

dépendants et donc la matrice A n’est pas diagonalisable.

5.3) Considérons la matrice A =

(
1 i
−i 1

)
.

— Le polynôme caractéristique de A est

det(A−λ 1) =
1− λ i
−i 1− λ = (1−λ)2 + i2 = (1−λ)2−1 = (1−λ−1)(1−λ+ 1) = −λ(2−λ).

Les valeurs propres de A sont donc 0 et 2 ; puisque ces valeurs propres sont simples, la matrice A
est diagonalisable.

— Cherchons les vecteurs propres associés à la valeur propre 0 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 0 1)X = 0. On a

(A− 0 1)X =

(
1 i
−i 1

)(
x
y

)
= 0⇔

{
x+ iy = 0
−ix+ y = 0

⇔ x+ iy = 0⇔ X = y

(
−i
1

)
.

Les vecteurs propres associés à la valeur propre 0 sont donc les vecteurs

X = c

(
−i
1

)
, c ∈ C0.
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— Cherchons les vecteurs propres associés à la valeur propre 2 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 2 1)X = 0. On a

(A− 2 1)X =

(
−1 i
−i −1

)(
x
y

)
= 0⇔

{
−x+ iy = 0
−ix− y = 0

⇔ −x+ iy = 0⇔ X = y

(
i
1

)
.

Les vecteurs propres associés à la valeur propre 2 sont donc les vecteurs

X = c

(
i
1

)
, c ∈ C0.

— La matrice S

(
−i i
1 1

)
est telle que S−1AS =

(
0 0
0 2

)
.

5.4) Soit la matrice A =

 1 1 0
0 1 0
0 0 1

 .

— Le polynôme caractéristique de A est

det(A− λ 1) =
1− λ 1 0

0 1− λ 0
0 0 1− λ

= (1− λ)3.

La matrice A admet donc la valeur propre triple 1.
— Cherchons les vecteurs propres associés à cette valeur propre 1 c’est-à-dire les vecteurs non nuls

X =

 x
y
z

 tels que (A− 1)X = 0. On a

(A− 1)X =

 0 1 0
0 0 0
0 0 0

 x
y
z

 = 0⇔ y = 0⇔ X = x

 1
0
0

+ z

 0
0
1

 .

Les vecteurs propres associés à cette valeur propre 1 sont donc les vecteurs

X = c1

 1
0
0

+ c2

 0
0
1

 , c1, c2 ∈ C non simultanément nuls.

Trois vecteurs propres sont donc toujours linéairement dépendants ; la matrice A n’est donc pas
diagonalisable.

5.5) Considérons la matrice A =

 0 −1 1
3 2 −3
1 −1 0

 .

— Le polynôme caractéristique de A est

det(A− λ 1) =
−λ −1 1
3 2− λ −3
1 −1 −λ

=
−λ −1 1
3 2− λ −3

1 + λ 0 −1− λ
si on remplace L3 par L3 − L1

=
−λ −1 1− λ
3 2− λ 0

1 + λ 0 0
si on remplace C3 par C3 + C1

= (1− λ)
3 2− λ

1 + λ 0
en développant selon la
troisième colonne

= (1− λ)(λ− 2)(λ+ 1)

Les valeurs propres de A sont donc −1, 1 et 2 ; puisque ces valeurs propres sont simples, la matrice
est diagonalisable.
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— Cherchons les vecteurs propres associés à la valeur propre −1 c’est-à-dire les vecteurs non nuls

X =

 x
y
z

 tels que (A+ 1)X = 0. On a successivement

(A+ 1)X =

 1 −1 1
3 3 −3
1 −1 1

 x
y
z

 = 0 ⇔
{
x− y + z = 0 (1)
x+ y − z = 0 (2)

⇔
{

2x = 0 (1) + (2)
2y − 2z = 0 (2)− (1)

⇔
{
x = 0
y = z

⇔ X = y

 0
1
1

 .

Les vecteurs propres associés à la valeur propre −1 sont donc les vecteurs

X = c

 0
1
1

 , c ∈ C0.

— Cherchons les vecteurs propres associés à la valeur propre 1 c’est-à-dire les vecteurs non nuls

X =

 x
y
z

 tels que (A− 1)X = 0. On a successivement

(A− 1)X =

 −1 −1 1
3 1 −3
1 −1 −1

 x
y
z

 = 0 ⇔

 −x− y + z = 0 (1)
3x+ y − 3z = 0 (2)
x− y − z = 0 (3)

⇔

 4x− 4z = 0 (2) + (3)
y = 0 (1) + (3)
x− y − z = 0 (3)

⇔
{
x = z
y = 0

⇔ X = x

 1
0
1

 .

Les vecteurs propres associés à la valeur propre 1 sont donc les vecteurs

X = c

 1
0
1

 , c ∈ C0.

— Cherchons les vecteurs propres associés à la valeur propre 2 c’est-à-dire les vecteurs non nuls
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X =

 x
y
z

 tels que (A− 2 1)X = 0. On a successivement

(A− 2 1)X =

 −2 −1 1
3 0 −3
1 −1 −2

 x
y
z

 = 0 ⇔

 −2x− y + z = 0
3x− 3z = 0
x− y − 2z = 0

⇔
{
−2x− y + z = 0
x− z = 0

⇔
{
x = z
y = −z

⇔ X = z

 1
−1
1

 .

Les vecteurs propres associés à la valeur propre 2 sont donc les vecteurs

X = c

 1
−1
1

 , c ∈ C0.

— La matrice S =

 0 1 1
1 0 −1
1 1 1

 est telle que S−1AS =

 −1 0 0
0 1 0
0 0 2

 .

Exercice 6

- Faux : le carré de A =

(
0 1
0 0

)
est la matrice nulle mais A n’est pas une matrice nulle.

- Un complexe comme somme et produit de complexes.
- Faux : si A est la matrice nulle on a l’égalité pour toute matrice B.
- Faux : B∗ = cA.
- Vrai : le déterminant de M est non nul.
- Vrai : l’addition des matrices est une opération commutative.
- Faux : le produit des matrices n’est pas commutatif.

- Faux : les valeurs propres de A =

(
0 −1
1 0

)
sont égales à −i et i.

- Faux : le déterminant d’une matrice carrée est égal au produit de ses valeurs propres.
- Faux : si un vecteur est un vecteur propre d’une valeur propre, son opposé l’est aussi.

REMARQUES IMPORTANTES
Lors de l’inversion et de la diagonalisation de matrices, on vérifie aisément que la solution trouvée est

correcte.
— Quand on a déterminé la matrice inverse d’une matrice donnée, on vérifie que le résultat est correct

en effectuant le produit de la matrice de départ par la matrice trouvée. On doit obtenir la matrice
identité.

— Quand on a déterminé une forme diagonale ∆ de la matrice de départ A et une matrice S qui y
conduit, pour savoir si le résultat est correct, on doit vérifier que S−1AS = ∆, ce qui est équivalent
à la vérification de l’égalité (bien plus simple !) AS = S∆.

3.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

iA =

 −2i −2
1 0
−i i

 ; C∗ =

(
2 + i −4i

3 i

)
;A+B impossible car matrices de formats différents ;
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A+ B̃ =

 −1 3i
−i 2
−2 2 + i

 ; AA∗ =

 8 −2i 2 + 2i
2i 1 i

2− 2i −i 2

 ; AB =

 −4 4i 2i
−i 0 i
−1 + i 2 2 + i

 ;

BA =

(
−1 −1 + 2i

−1− 5i −1 + i

)
; CB =

(
2 + 2i 6 1 + 4i
1 + 4i −2i 1− 5i

)
;

CA impossible car le nombre de colonnes de C n’est pas égal au nombre de lignes de A.

Exercice 2

−7,−6, 0.

Exercice 3

x(x− 3).

Exercice 4(
2 i
−1 −i

)
et

 −1 1 2
1 0 −1
1 −1 −1

.

Exercice 5

Première matrice : valeurs propres simples 0 et 3 donc matrice diagonalisable.

Vecteurs propres relatifs à la valeur propre 0 : c

(
−1
1

)
, c ∈ C0.

Vecteurs propres relatifs à la valeur propre 3 : c

(
1
2

)
, c ∈ C0.

La matrice S =

(
−1 1
1 2

)
est telle que S−1AS =

(
0 0
0 3

)
.

Deuxième matrice : valeur propre double 1.

Vecteurs propres relatifs à la valeur propre 1 : c

(
0
1

)
, c ∈ C0 donc matrice non diagonalisable.

Troisième matrice : valeurs propres simples 0 et 2 donc matrice diagonalisable.

Vecteurs propres relatifs à la valeur propre 0 : c

(
−i
1

)
, c ∈ C0.

Vecteurs propres relatifs à la valeur propre 2 : c

(
i
1

)
, c ∈ C0.

La matrice S =

(
−i i
1 1

)
est telle que S−1AS =

(
0 0
0 2

)
.

Quatrième matrice : valeur propre triple 1.

Vecteurs propres relatifs à la valeur propre 1 : c1

 1
0
0

+c2

 0
0
1

 , c1, c2 ∈ C non simultanément nuls ;

la matrice n’est donc pas diagonalisable.

Cinquième matrice : valeurs propres −2 (simple) et 7 (double).

Vecteurs propres relatifs à la valeur propre 7 : c1

 1
−2
0

 + c2

 0
2
1

 , c1, c2 ∈ C non simultanément

nuls.

Vecteurs propres relatifs à la valeur propre −2 : c

 2
1
−2

 , c ∈ C0.
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La matrice S =

 1 0 2
−2 2 1
0 1 −2

 est telle que S−1AS =

 7 0 0
0 7 0
0 0 −2

 .

Exercice 6

- Faux : le carré de A =

(
0 1
0 0

)
est la matrice nulle mais A n’est pas une matrice nulle.

- Vrai : dans ce cas M admet un inverse.
- Vrai : l’addition des matrices est une opération commutative.
- Faux : le produit des matrices n’est pas commutatif.

- Faux : les valeurs propres de A =

(
0 −1
1 0

)
sont égales à −i et i.

- Faux : le déterminant d’une matrice carrée est égal au produit de ses valeurs propres.
- Faux : si un vecteur est un vecteur propre d’une valeur propre, son opposé l’est aussi.

- Faux : les valeurs propres de A =

(
0 −1
1 0

)
sont égales à −i et i mais 0 n’est pas valeur propre de A.

- Vrai : si det(M − λ0 1) = 0 alors det(M − λ0 1) = 0.
- Vrai : le déterminant d’une matrice carrée est égal au déterminant de sa transposée.

3.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

ĩA =

 2 0
2i −i
−2i 1 + i

 (iB)∗ =

 −i −1
0 −2i
i −1− i

 A+B =

(
1− 2i 2 −3
i 1 2

)
A+ B̃ : impossible car A et B̃ ne sont pas de même format.

AA∗ =

(
12 −4− 2i

−4 + 2i 3

)
AB : impossible car le nombre de colonnes de A (3) diffère du nombre de lignes de B (2).
BA : impossible car le nombre de colonnes de B (3) diffère du nombre de lignes de A (2).

CB =

(
1 6 2 + 6i

1 + 4i −2i 1− 5i

)
Exercice 2

Toute matrice commute avec

(
2 0
0 2

)
.

Toute matrice diagonale commute avec

(
2 0
0 1

)
.

Toute matrice du type

(
a 0
c a

)
commute avec

(
2 0
1 2

)
.

Exercice 3

Le premier déterminant est égal à 5 + 7i et le second à 7
9 .

Exercice 4

Le premier déterminant se factorise sous la forme (3− x)(x+ 2) et le second sous la forme

−

(
x− 1 + i

√
7

2

)(
x− 1− i

√
7

2

)
.
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Exercice 5

Les matrices inverses sont

(
−1 −i
0 −i

) (
cos(α) sin(α)
sin(α) − cos(α)

)  3 2 6
1 1 2
2 2 5

 .

Exercice 6

— Matrice

(
2 2
2 2

)
: valeurs propres : 0 et 4.

Vecteurs propres relatifs à λ = 0 : c

(
−1
1

)
, c ∈ C0.

Vecteurs propres relatifs à λ = 4 : c

(
1
1

)
, c ∈ C0.

Cette matrice A est diagonalisable ; si S =

(
−1 1
1 1

)
, on a S−1AS =

(
0 0
0 4

)
.

— Matrice

(
2 0
2 2

)
: valeur propre : 2 (double).

Vecteurs propres relatifs à λ = 2 : c

(
0
1

)
, c ∈ C0.

Cette matrice n’est pas diagonalisable car elle ne possède pas deux vecteurs linéairement indépendants.

— Matrice

(
2 0
0 2

)
: valeur propre : 2 (double).

Vecteurs propres relatifs à λ = 2 : c

(
1
0

)
+ c′

(
0
1

)
avec c, c′ ∈ C non simultanément nuls.

Cette matrice A est déjà diagonale.

— Matrice

(
1 1 + i

1 + i 1

)
: valeurs propres : −i et 2 + i.

Vecteurs propres relatifs à λ = −i : c

(
1
−1

)
, c ∈ C0.

Vecteurs propres relatifs à λ = 2 + i : c

(
1
1

)
, c ∈ C0.

Cette matrice A est diagonalisable ; si S =

(
1 1
−1 1

)
, on a S−1AS =

(
−i 0
0 2 + i

)
.

— Matrice

 1 1 0
0 1 0
0 0 1

 : valeur propre : 1 (triple).

Vecteurs propres relatifs à λ = 1 : c

 1
0
0

+ c′

 0
0
1

 avec c, c′ ∈ C non simultanément nuls.

Cette matrice n’est pas diagonalisable car elle ne possède pas trois vecteurs propres linéairement
indépendants.

— Matrice

 1 −1 −1
−1 1 −1
−1 −1 1

 : valeurs propres : −1 (simple) et 2 (double).

Vecteurs propres relatifs à λ = 2 : c

 1
−1
0

+ c′

 1
0
−1

 avec c, c′ ∈ C non simultanément nuls.

Vecteurs propres relatifs à λ = −1 : c

 1
1
1

 , c ∈ C0.

Cette matrice A est diagonalisable ; si S =

 1 1 1
−1 0 1
0 −1 1

, on a S−1AS =

 2 0 0
0 2 0
0 0 −1

.
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Exercice 7

- Faux : le carré de A =

(
0 0
0 1

)
est la matrice A mais A n’est ni la matrice nulle ni l’identité.

- Vrai : dans ce cas M admet un inverse.
- Faux : si A et B sont de format m× p alors A+B est de format m× p mais le produit est impossible
sauf si m = p.
- Faux : le produit matriciel n’est pas commutatif.
- Faux : le déterminant de la matrice doit être non nul or il est égal au produit des valeurs propres de la
matrice.
- Faux : un vecteur propre et son opposé (vecteur propre de la meme valeur propre) est le vecteur nul
jamais vecteur propre.
- Faux : cf ci-dessus.
- Vrai : propriété (cf théorie).



Chapitre 4

Listes d’exercices 2025 - 2026 :
corrigé

Liste 1 : fonctions élémentaires

I. Eléments de base relatifs aux fonctions

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous.
Si la fonction est composée, mentionner de quelles fonctions élémentaires elle est la
composée

f1(x) =
1

2− |x+ 1|
, f2(x) = ln(−x2 − 2x+ 3), f3(x) =

√
x− 1

x− 2
, f4(x) =

√
x− 1√
x− 2

f5(x) = ln(ex − 1), f6(x) = ln
(√

1 + x2 − x
)
, f7(x) = arcsin(x2 − 1)

Fonction dom(f)

f1 : x 7→ 1/(2− |x+ 1|) R \ {−3, 1}

f2 : x 7→ ln(−x2 − 2x+ 3) ]− 3, 1[

f3 : x 7→
√

(x− 1)/(x− 2) ]−∞, 1]∪ ]2,+∞[

f4 : x 7→
√
x− 1/

√
x− 2 ]2,+∞[

f5 : x 7→ ln(ex − 1) ]0,+∞[

f6 : x 7→ ln
(√

1 + x2 − x
)

R

f7 : x 7→ arcsin(x2 − 1) [−
√

2,
√

2]

Si la fonction donnée est égale à f ◦ g alors on a

- pour f2 : x 7→ ln(−x2 − 2x+ 3) on a les fonctions g : x 7→ −x2 − 2x+ 3 et f : y 7→ ln(y)
- pour f3 : x 7→

√
(x− 1)(x− 2) on a les fonctions g : x 7→ (x− 1)/(x− 2) et f : y 7→ √y

- pour f7 : x 7→ arcsin(x2 − 1) on a les fonctions g : x 7→ x2 − 1 et f : y 7→ arcsin(y)

57



58 CHAPITRE 4. CORRIGÉ DES EXERCICES 2025-2026 Q2

2. Déterminer le domaine de définition des fonctions données explicitement ci-dessous
et les représenter graphiquement (uniquement en se servant des symétries et des
représentations graphiques de ln et de l’exponentielle).

f1(x) = ln(−x), f2(x) = − ln

(
1

|x|

)
, f3(x) = | − ln(x)|, f4(x) = ln

(
1

x

)
f5(x) = − exp(x), f6(x) = exp(x+ 1), f7(x) = exp(x) + 1

Le domaine de définition de la première fonction est ]−∞, 0[ ; celui de la deuxième est R0 et celui
de la troisième et de la quatrième est ]0,+∞[.
Le domaine de définition des 3 fonctions exponentielles est R.

1 2 3 4

-4

-3

-2

-1

1

2

-
X

6
Y y = ln(x)

-4 -3 -2 -1 1

-4

-3

-2

-1

1

2

-
X

6
Y

y = ln(−x)

-4 -2 2 4

-4

-3

-2

-1

1

2

-

X

6
Y

y = − ln
(

1
|x|

) 1 2 3 4

1

2

3

4

-

X

6
Y

y = | − ln(x)|
−1 1 2 3 4

−2

−1

1

2

3
Y

X

y = ln(1/x)

-4 -2 2 4

-4

-2

2

4

-
X

6
Y

y = exp(x)

y = − exp(x)

-4 -3 -2 -1 1 2

1

2

3

4

5

6

7

-
X

6Y

y = exp(x)

y = exp(x+ 1)

-4 -3 -2 -1 1 2

1

2

3

4

5

6

7

-
X

6Y

y = exp(x)

y = (exp(x)) + 1



59

II. Manipulation des fonctions élémentaires

1. Simplifier les expressions suivantes au maximum

(a) ln (cos(π/3))+ln
(

(sin(4π/3)
2
)
, (b) tan

(
ln(e3π/2)

)
, (c) exp(3 ln(2e)), (d) arcsin

(
−
√

3

2

)

(e) arcsin

(
sin

(
4π

5

))
, (f) arctan

(√
3

3

)
, (g) tan

(
arctan

(π
2

))
, (h) arctan

(
tan

(
4π

7

))
.

Les expressions sont définies et valent respectivement (1) ln(3)− 3 ln(2), (2) − tan(ln(2)), (3)
8e3

(4) −π
3

, (5)
π

5
, (6)

π

6
, (7)

π

2
, (8) −3π

7
.

III. Limites des valeurs des fonctions

1. Se rappeler les limites relatives aux fonctions élémentaires et en déduire rapidement
les quelques limites suivantes

(a) lim
x→0

exp

(
1

x

)
, (b) lim

x→−∞

1

ln(x2)
, (c) lim

x→1+
arctan

(
1

x− 1

)
.

La limite (a) n’existe pas, la limite (b) vaut 0+ et la limite (c) vaut
(π

2

)−
.

2. Calculer (si possible) les limites suivantes, sans appliquer le théorème de l’Hospital

(a) lim
x→2

1

x2 − 4
(b) lim

x→+∞
(−x2 − 2x) (c) lim

x→−∞

√
1 + x6

x3

(d) lim
x→0+

cotan (x)

sin(3x)
(e) lim

x→0

tan (x)

sin(2x)
(f) lim

x→1−

x2 − 1

|1− x|

(g) lim
x→−∞

−2x2 + 5x

x2 + 3
(h) lim

x→+∞
(ln(3x+ 2)− ln(3x)) (i) lim

x→+∞
ln(| − x+ π|)

Toutes ces limites peuvent être envisagées et sont respectivement égales à
(a) ∞ (b) −∞ (c) (−1)− (d) +∞ (e) (1/2)+ (f) (−2)+ (g) (−2)− (h) 0+

(i) +∞

IV. Continuité et dérivation

1. On donne des fonctions par les expressions explicites suivantes. En déterminer le
domaine de définition, de continuité, de dérivabilité et en calculer la dérivée première.

f1(x) = 5
√

3x2 + 1 f2(x) =
1√

2 + x
f3(x) =

1

3x2 + 6x+ 3
f4(x) = arctan(cos(x))

f5(x) =
√

sin(2x) f6(x) = sin(cotan(x)) f7(x) = ln(x4) f8(x) = ln(x2 + x− 2)

Si on note A le domaine de définition des fonctions, B leur domaine de continuité et C leur do-
maine de dérivabilité, on a les résultats suivants
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Fonction A = B C Dérivée

f1(x) = 5
√

3x2 + 1 R R
6x

5 5
√

(3x2 + 1)4

f2(x) =
1√

2 + x
]− 2,+∞[ ]− 2,+∞[

−1

2
√

(2 + x)3

f3(x) =
1

3x2 + 6x+ 3
R \ {−1} R \ {−1} −2

3(x+ 1)3

f4(x) = arctan(cos(x)) R R
− sin(x)

1 + cos2(x)

f5(x) =
√

sin(2x)
⋃
k∈Z

[
kπ,

π

2
+ kπ

] ⋃
k∈Z

]
kπ,

π

2
+ kπ

[ cos(2x)√
sin(2x)

f6(x) = sin(cotan(x)) R \ {kπ : k ∈ Z} R \ {kπ : k ∈ Z} − cos(cotan(x))

sin2(x)

f7(x) = ln(x4) R0 R0
4

x

f10(x) = ln(x2 + x− 2) ]−∞,−2[ ∪ ]1,+∞[ ]−∞,−2[ ∪ ]1,+∞[
2x+ 1

x2 + x− 2

2. On donne la fonction g dérivable sur ]− 1, 1[ et la fonction f : t 7→ f(t) = g(ln(t)).
a) Déterminer le domaine de dérivabilité de f .
b) Calculer la dérivée de f en fonction de la dérivée de g.
c) Mêmes questions si g est dérivable sur ]0, 3[ et si f est la fonction y 7→ f(y) =

g(
√
y2 − 1).

a) Le plus grand ouvert dans lequel f est dérivable est ]1/e, e[.

b) Sur son domaine de dérivabilité, on a Df(t) = Dug(u)|u=ln(t) × 1/t.

c) Le domaine de dérivabilité de f est ]−
√

10,−1[ ∪ ]1,
√

10[ ; dans cet ensemble, sa dérivée vaut

Df(y) = Dug(u)|
u=
√
y2−1 ×

y√
y2 − 1

.

3. Soit F : t 7→ F (t) = f(x(t)) avec x(3) = 2, Dx(3) = 5 et (Dxf)(2) = −4. En supposant F
dérivable en 3, que vaut (DF )(3) ?

La dérivée de F en 4 vaut -20.

V. Théorème de l’Hospital

1. Calculer les limites suivantes (dans chaque cas, si ce n’est pas possible ou si elle
n’existe pas, en donner la raison)

(1) lim
x→0+

cos(2x)

x+ 1
(2) lim

x→+∞
x ln

(
2 +

1

x

)
(3) lim

x→0

arcsin(2x)

x

(4) lim
x→0+

√
x3 ln( 5

√
x) (5) lim

x→−∞

ln(1/|x|)√
x2

(6) lim
x→−∞

3x2 + 1

arctan(x2 + 2)

(7) lim
t→1+

(1− t) ln(t2 − 1) (8) lim
x→2−

ln(x− 2)

|2− x|
(9) lim

x→+∞

ln(x2 − 3x− 4)

x− 4

(10) lim
x→+∞

(
ln(|2− x|)− ln(x2)

)
(11) lim

x→π

1 + cos(x)

sin(x)
(12) lim

x→0

tan(x)− sin(x)

x3

(13) lim
u→+∞

u2

e3u
(14) lim

y→−∞
y e−y

2

(15) lim
x→+∞

exp(x)√
exp(x2)
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Fonction dom(f) Limite

(1) f(x) = cos(2x)/(x+ 1) R \ {−1} lim
x→0+

cos(2x)/(x+ 1) = 1−

(2) f(x) = x ln (2 + 1/x)
]
−∞,− 1

2

[
∪ ]0,+∞[ lim

x→+∞
x ln (2 + 1/x) = +∞

(3) f(x) = arcsin(2x)/x
[
− 1

2 , 0
[
∪
]
0, 12
]

lim
x→0

arcsin(2x)/x = 2

(4) f(x) =
√
x3 ln( 5

√
x) ]0,+∞[ lim

x→0+

√
x3 ln( 5

√
x) = 0

(5) f(x) = ln(1/|x|)/
√
x2 R0 lim

x→−∞
ln(1/|x|)/

√
x2 = 0

(6) f(x) = (3x2 + 1)/ arctan(x2 + 2) R lim
x→−∞

(3x2 + 1)/ arctan(x2 + 2) = +∞

(7) f(x) = (1− t) ln(t2 − 1) ]−∞,−1[ ∪ ]1,+∞[ lim
t→1+

(1− t) ln(t2 − 1) = 0

(8) f(x) = ln(x− 2)/|2− x| ]2,+∞[ lim
x→2−

ln(x− 2)/|2− x| pas de sens

(9) f(x) = ln(x2 − 3x− 4)/(x− 4) ]−∞,−1[ ∪ ]4,+∞[ lim
x→+∞

ln(x2 − 3x− 4)/(x− 4) = 0

(10) f(x) =
(
ln(|2− x|)− ln(x2)

)
R0 \ {2} lim

x→+∞

(
ln(|2− x|)− ln(x2)

)
= −∞

(11) f(x) = (1 + cos(x))/ sin(x) R \ {kπ : k ∈ Z} lim
x→π

(1 + cos(x))/ sin(x) = 0

(12) f(x) = (tan(x)− sin(x))/x3 R0 \ {π2 + kπ : k ∈ Z} lim
x→0

(tan(x)− sin(x))/x3 =
1

2

(13) f(x) = u2/e3u R lim
u→+∞

u2/e3u = 0+

(14) f(y) = y e−y
2

R lim
y→−∞

y e−y
2

= 0−

(15 )f(x) = exp(x)/
√

exp(x2) R lim
x→+∞

exp(x)/
√

exp(x2) = 0+

La limite lim
x→2−

ln(x−2)/|2−x| n’a pas de sens car on peut trouver un intervalle ouvert comprenant

2 dont l’intersection avec dom(f)∩ ]−∞, 2[ est vide.
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Liste 2 : décomposition de fractions rationnelles
et approximations polynomiales

I. Décomposition en fractions simples

1. Décomposer les fractions rationnelles suivantes en fractions rationnelles simples à
coefficients réels.

(a)
1

x2 − 4x+ 4
, (b)

x

−x2 + 2x+ 3
, (c)

2

x(x2 − 4x+ 4),
(d)

x2 + 1

3x+ 1

(e)
x2 − 2

x2 + 2
, (f)

x3

x3 + 1
, (g)

x

x2 + 1

On a les décompositions suivantes :

(a)
1

(x− 2)2
, x ∈ R \ {2} (b) −1

4

(
3

x− 3
+

1

x+ 1

)
, x ∈ R \ {−1, 3}

(c)
1

2

(
1

x
− 1

x− 2
+

2

(x− 2)2

)
, x ∈ R0 \ {2} (d)

3x− 1

9
+

10

9(3x+ 1)
, x ∈ R \ {−1/3}

(e) 1− 4

x2 + 2
, x ∈ R (f) 1− 1

3

(
1

x+ 1
− x− 2

x2 − x+ 1

)
, x ∈ R \ {−1}

(g)
x

x2 + 1
, x ∈ R

II. Approximations polynomiales

1. Dans chacun des cas suivants, déterminer l’approximation polynomiale à l’ordre n en
x0 pour la fonction fk. Représenter f2 ( —-ou f3 ou f5— ) et ses approximations.
Pour f5,
a) donner une expression explicite du reste de ces approximations.
b) indiquer où se situe le graphique de f5 au voisinage de 0 par rapport à celui de
chacune des approximations en tenant compte du point précédent.

f1(x) = cos(x) e3x, x0 = 0, n = 0, 1, 2, 3 f2(x) =
√

1 + 9x, x0 = 0, n = 0, 1, 2
f3(x) = 1/(1− 2x), x0 = 0, n = 0, 1, 2 f4(x) = arctan(x), x0 = 0 (resp. x0 = 1), n = 0, 1, 2
f5(x) = cos2(x), x0 = 0, n = 0, 1, 2 f6(x) = sin(x), x0 = 1, n = 0, 1, 2

Fonction Ordre 0 Ordre 1 Ordre 2

f1 1 1 + 3x 1 + 3x+ 4x2, x ∈ R

f2 1 1 +
9x

2
1 +

9x

2
− 81x2

8
, x ∈ R

f3 1 1 + 2x 1 + 2x+ 4x2, x ∈ R

f4(x0 = 0) 0 x x, x ∈ R

f4(x0 = 1)
π

4

π

4
+
x− 1

2

π

4
+
x− 1

2
− (x− 1)2

4
, x ∈ R

f5 1 1 1− x2, x ∈ R

f6 sin(1) sin(1) + cos(1)(x− 1) sin(1) + cos(1)(x− 1)− sin(1)(x− 1)2/2, x ∈ R
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L’approximation à l’ordre 3 en 0 de f1 est donnée par P (x) = 1 + 3x+ 4x2 + 3x3, x ∈ R.

a) Pour f5, si on note Rn le reste de l’approximation polynomiale de f à l’ordre n en 0, alors pour
tout x ∈ R, il existe u0, u1, u2 compris entre 0 et x tels que

R0(x) = − sin(2u0)x, R1(x) = −2 cos(2u1).
x2

2!
= − cos(2u1)x2

et

R2(x) = 4 sin(2u2).
x3

3!
=

2 sin(2u2)x3

3
.

b) Lorsque x est au voisinage de 0, R0(x) et R1(x) sont négatifs tandis que R2(x) est positif. Dès
lors, le graphique de la fonction est situé en dessous de celui de P0 et de celui de P1 mais au-dessus
de celui de P2.

Dans les graphiques suivants, notons Pi l’approximation polynomiale à l’ordre i.

-1 1 2 3

-1

1

2

3

-
X

6Y f2

P0

P1

P2

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

1.5

2.0

2.5

3.0

-
X

6
Y

f3

P0

P1P2

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

-
X

6

Y

f5

P0 = P1

P2

2. Déterminer l’approximation polynomiale à l’ordre 3 en 0 de la fonction cos et en
estimer le reste. Représenter la fonction et cette approximation dans le même repère
orthonormé.

L’approximation polynomiale à l’ordre 3 en 0 est donnée par P (x) = 1− x2

2 , x ∈ R et le reste vaut

R3(x) =
cos(u)

4!
x4, x ∈ R avec u strictement compris entre 0 et x. Dès lors, on a |R3(x)| ≤ x4

24
.

-2 -1 1 2

-1.0

-0.5

0.5

1.0

-
X

6
Y

cosP3

3. La force de marée agissant sur une masse m peut être définie comme la différence entre
l’attraction de la Lune sur cette masse située à la surface de la Terre et l’attraction de
la Lune sur cette masse en supposant qu’elle est au centre de la Terre. Si on désigne
par R le rayon terrestre, d la distance 1 Terre-Lune, G la constante de gravité, M la
masse de la Lune, on peut alors écrire

F =
GMm

(d−R)2
− GMm

d2

1. entre les centres respectifs
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en un point de la surface terrestre situé sur la droite joignant le centre de la Terre
et le centre de la Lune. En tenant compte du fait que le rapport R/d est petit, une
expression approximative (simplifiée) de la force F est donnée par

FApprox =
2GMmR

d3
.

Expliquer pourquoi une approximation de F est donnée par l’expression précédente.
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Liste 3 : Calcul intégral à une variable
sur un ensemble borné fermé et calcul d’aires

I. Calcul d’intégrales sur un ensemble borné fermé

1. Soit a > 0. Démontrer et interpréter graphiquement que

(a) si f est une fonction continue et paire sur [−a, a], alors

∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx.

(b) si f est une fonction continue et impaire sur [−a, a], alors

∫ a

−a
f(x)dx = 0.

2. Calculer les intégrales suivantes (si c’est possible)

(1)

∫ 1

−2
(x2 + 2x) dx (2)

∫ 1

−1
xex dx (3)

∫ 0

−1
xe−x

2

dx

(4)

∫ 3

1/2

√
3 +

x

2
dx (5)

∫ π/3

π/4

sin2(x) dx (6)

∫ π/3

π/4

cotan2(x) dx

(7)

∫ π

0

x sin2(x) dx (8)

∫ π/2

0

cos(x) sin2(x) dx (9)

∫ 4

−1

x+ 1

x+ 2
dx

(10)

∫ 1

−1
arctan(x) dx (11)

∫ 2
√
3

−2

1

4 + x2
dx (12)

∫ √3

0

1√
9− x2

dx

(1)

∫ 1

−2
(x2 + 2x) dx = 0 (2)

∫ 1

−1
xex dx =

2

e

(3)

∫ 0

−1
xe−x

2

dx =
1− e

2e
(4)

∫ 3

1/2

√
3 +

x

2
dx = 9

√
2− 13

√
13

6

(5)

∫ π/3

π/4

sin2(x) dx =
π − 3

√
3 + 6

24
(6)

∫ π/3

π/4

cotan2(x) dx =
12− 4

√
3− π

12

(7)

∫ π

0

x sin2(x) dx =
π2

4
(8)

∫ π/2

0

cos(x) sin2(x) dx =
1

3

(9)

∫ 4

−1

x+ 1

x+ 2
dx = 5− ln(6) (10)

∫ 1

−1
arctan(x) dx = 0

(11)

∫ 2
√
3

−2

1

4 + x2
dx =

7π

24
(12)

∫ √3

0

1√
9− x2

dx = arcsin

(√
3

3

)

3. En cartographie, sur une carte de Mercator, l’ordonnée d’un point proche de l’équateur
et dont la latitude est ϕ ∈ [0, π2 [, est donnée par

y(ϕ) = R

∫ ϕ

0

1

cos(u)
du.

Montrer que

y(ϕ) = R ln
(∣∣∣tan

(ϕ
2

+
π

4

)∣∣∣) .
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II. Calcul d’aires

1. Calculer l’aire de la partie du plan dont une description analytique est la suivante

{
(x, y) : x ∈

[
π

4
,

5π

4

]
, y ∈ R et cos(x) ≤ y ≤ sin(2x)

}
.

Donner aussi une représentation graphique de cet ensemble.

1 2 3 4 5

-1.0

-0.5

0.5

1.0

-
X

6
Y

y = cos(x)

y = sin(2x)

x = π
4 x = 5π

4

L’aire hachurée vaut
√

2 + 1
4 .

2. Calculer l’aire de la partie du plan dont une description analytique est la suivante

{
(x, y) : x ∈ [−2, 1], y ∈ [x− 1, 1− x2]

}
.

Donner aussi une représentation graphique de cet ensemble.

-3 -2 -1 1 2 3

-4

-3

-2

-1

1

-
X

6
Y y = x− 1

y = 1− x2

L’aire hachurée vaut 9
2 .

3. On considère l’ensemble {(x, y) ∈ R2 : x ≤ y ≤ 2x, y ≥ x2}. Donner une représentation
graphique de cet ensemble en le hachurant et calculer l’aire de cette région du plan.
L’aire de la région hachurée vaut 7/6.
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-3 -2 -1 1 2 3

1

2

3

4

5

-

X

6
Yy = x2 y = 2x

y = x
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Liste 4 : Calcul intégral à une variable sur un
ensemble non borné fermé et nombres complexes

I. Calcul d’intégrales sur un ensemble non borné fermé

1. Calculer les intégrales suivantes (si c’est possible)

(1)

∫ 2

0

x+ 1√
x

dx (2)

∫ 0

−1
ln(x2) dx (3)

∫ e

−1
x ln(|x|)) dx

(4)

∫ 0

−∞

1

9x2 + 4
dx (5)

∫ +∞

2

1

9x2 − 4
dx (6)

∫ +∞

2

1

x2 − 2x+ 1
dx

(7)

∫ +∞

1

1

x2 + 2x+ 5
dx (8)

∫ −2
−∞

1

x2 + 2x− 3
dx (9)

∫ π/3

−∞
cos(2x) ex dx

(10)

∫ +∞

0

x e2x dx (11)

∫ 1

0

ln(x) dx (12)

∫ +∞

4

1

x2 − 4
dx

(1)

∫ 2

0

x+ 1√
x

dx =
10
√

2

3
(2)

∫ 0

−1
ln(x2) dx = −2

(3)

∫ e

−1
x ln(|x|)) dx =

e2 + 1

4
(4)

∫ 0

−∞

1

9x2 + 4
dx =

π

12

(5)

∫ +∞

2

1

9x2 − 4
dx =

1

12
ln(2) (6)

∫ +∞

2

1

x2 − 2x+ 1
dx = 1

(7)

∫ +∞

1

1

x2 + 2x+ 5
dx =

π

8
(8)

∫ −2
−∞

1

x2 + 2x− 3
dx 6 ∃

(9)

∫ π/3

−∞
cos(2x) ex dx =

e
π
3 (2
√

3− 1)

10
(10)

∫ +∞

0

x e2x dx 6 ∃

(11)

∫ 1

0

ln(x) dx = −1 (12)

∫ +∞

4

1

x2 − 4
dx =

1

4
ln(3)

Pour l’intégrale (8), la fonction n’est pas intégrable en −3 et pour l’intégrale (10), elle n’est pas intégrable
en +∞.

II. Les nombres complexes

1. Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des
complexes ci-dessous. Représenter ces complexes dans le plan muni d’un repère
orthonormé (� X = axe réel � et � Y= axe imaginaire �)

i+ 1, (−i+ 1)(−1− 2i),
1

−i+ 1
,

i7

i− 1
, (1− i)2.

On a
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z <z =z z |z|

z1 = i+ 1 1 1 1− i
√

2

z2 = (−i+ 1)(−1− 2i) −3 −1 −3 + i
√

10

z3 = 1/(−i+ 1) 1/2 1/2 (1− i)/2
√

2/2

z4 = i7/(i− 1) −1/2 1/2 (−1− i)/2
√

2/2

z5 = (1− i)2 0 −2 2i 2

-
<z1

6
=z

1 • z1

•
z2

•z3•z4

• z5

2. Déterminer la forme trigonométrique des complexes suivants et les représenter dans
le plan muni d’un repère orthonormé (� X = axe réel � et � Y= axe imaginaire �)

−i, i+ 1,
1

2
(
√

3− i).

On a

z1 = −i = cos

(
3π

2

)
+ i sin

(
3π

2

)
, z2 = i+ 1 =

√
2
(

cos
(π

4

)
+ i sin

(π
4

))
z3 =

1

2
(
√

3− i) = cos

(
11π

6

)
+ i sin

(
11π

6

)
.

-
<z1

6
=z

1

•z1

•z2

• z3

3. On suppose que α est un nombre réel. Déterminer les partie réelle, imaginaire, le
conjugué et le module de chacun des complexes ci-dessous. Représenter ces complexes
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dans le plan muni d’un repère orthonormé (�X = axe réel � et � Y= axe imaginaire �)
en supposant que α appartient à l’intervalle [π/2, π[

cos(α)− i sin(α),
1

cos(α)− i sin(α)
, (cos(1) + i sin(1))(cos(α)− i sin(α)), sin(2α)− i cos(2α).

On a

z <z =z z |z|

z1 = cos(α)− i sin(α) cos(α) − sin(α) cos(α) + i sin(α) 1

z2 = 1/(cos(α)− i sin(α)) cos(α) sin(α) cos(α)− i sin(α) 1

z3 = (cos(1) + i sin(1))(cos(α)− i sin(α)) cos(1− α) sin(1− α) cos(1− α)− i sin(1− α) 1

z4 = sin(2α)− i cos(2α) sin(2α) − cos(2α) sin(2α) + i cos(2α) 1

•
z2

•z1 •
z3

•z4

-
<z

•
1

6
=z
•

1

4. Résoudre les équations suivantes et représenter les solutions dans le plan muni d’un
repère orthonormé (� X = axe réel � et � Y= axe imaginaire �)

(1) z2 + 8 = 0 (2) 27z3 + 1 = 0 (3) z2 + 2 = iz (4) z2− z+ 1 + i = 0 (5) z2− (1−2i)z = 1 + i

L’ensemble des solutions de l’équation (1) est S = {−2
√

2 i, 2
√

2 i}.
L’ensemble des solutions de l’équation (2) est

S =

{
−1

3
,

1

6

(
1 + i

√
3
)
,

1

6

(
1− i

√
3
)}

.

L’ensemble des solutions de l’équation (3) est S = {−i, 2i}.
L’ensemble des solutions de l’équation (4) est S = {1− i, i}.
L’ensemble des solutions de l’équation (5) est S = {1− i,−i}.
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-
<z

•
−1/3

1

6
=z

1•i

• 2i

• −i

•2
√

2 i

•−2
√

2 i

•
1+i
√
3

6

•
1−i
√
3

6

•
1− i
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Liste 5 : Equations différentielles (1)

I. Quelques manipulations

1. Si l’équation différentielle (Dty)2 = 2y admet 2 solutions distinctes non nulles, peut-
on affirmer qu’une combinaison linéaire de ces solutions est encore solution de cette
équation ?

Cette équation n’est pas linéaire car une combinaison linéaire de solutions de cette équation n’est
pas solution de l’équation. On a par exemple que la fonction t 7→ t2/2 est solution alors que la
fonction t 7→ t2 ne l’est pas.

2. Montrer que la fonction g(t) = 3t2−6t+2, t ∈ R, vérifie le système

 (Dty)2 = 12(y + 1)
y(0) = 2
y(2) = 2

On a g(0) = 2 et g(2) = 2 ainsi que Dg(t) = 6t − 6. En remplaçant Dy et y respectivement par
Dg et g dans le système, les trois équations sont vérifiées.

3. Montrer que la fonction g(t) = cotan(t) − 1/ sin(t), t ∈ ]0, π/2[, vérifie l’équation
2 Dy + y2 = −1.

On a Dg(t) = (−1 + cos(t))/ sin2(t) et en remplaçant Dy et y respectivement par Dg(t) et g dans
l’équation donnée, celle-ci est vérifiée.

4. Montrer que la fonction u : x 7→ C1 e
C2x, x ∈ R, C1 et C2 étant des constantes complexes

arbitraires, vérifie l’équation différentielle v(x)D2v(x)− (Dv(x))2 = 0.

La fonction u est infiniment dérivable sur R et on a Du(x) = C1 C2 e
C2x et D2u(x) = C1 (C2)2 eC2x.

En remplaçant dans l’équation donnée, on constate que cette dernière est vérifiée.

5. Montrer que la fonction x 7→ tan(x)+1/ cos(x), x ∈ ]0, π/2[ , vérifie l’équation 2Df−f2 = 1.

La fonction donnée est dérivable sur ]0, π/2[ et on a

D

(
tan(x) +

1

cos(x)

)
=

1

cos2(x)
+

sin(x)

cos2(x)
, x ∈

]
0,
π

2

[
.

Dès lors, il est facile de montrer que, pour tout x ∈ ]0, π/2[, on a l’égalité.

II. Résolution d’équations différentielles

1. Résoudre les équations différentielles suivantes, en spécifiant dans quel intervalle on
travaille

1) 4Df + 2if = 0 2) D2f = 2f 3) D2f = 0

4) D2f +Df − 2f = 0 5) 4D2f − f = 0 6) D2f + f = 0
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Les solutions des équations ci-dessus sont les fonctions suivantes

1) f(x) = Ce−ix/2, x ∈ R où C est une constante arbitraire complexe.

2) f(t) = C1 e
−
√
2 t + C2 e

√
2 t, t ∈ R où C1 et C2 sont des constantes arbitraires complexes.

3) f(u) = C1u+ C2, u ∈ R où C1 et C2 sont des constantes arbitraires complexes.

4) f(x) = C1 e
−2x + C2 e

x, x ∈ R où C1 et C2 sont des constantes arbitraires complexes.

5) f(x) = C1 e
−x/2 + C2 e

x/2, x ∈ R où C1 et C2 sont des constantes arbitraires complexes.

6) f(x) = C1 e
−ix + C2 e

ix, x ∈ R où C1 et C2 sont des constantes arbitraires complexes.

2. Résoudre les équations différentielles suivantes, en spécifiant dans quel intervalle on
travaille (pour l’équation 3, en donner aussi les solutions réelles)

1) D2f(x) +Df(x)− 2f(x) = ex + 4x2e2x + 1 2) 4D2f(x)− f(x) = cos2(x)− 1/2

3) D2f(x) + f(x) = x e2x 4) D2f(x) + 2Df(x) + f(x) = (2 + cos(x))e−x

5 D2f(x)− f(x) = 1 + x2, 6) 9D2f(x)−Df(x) = 1

7) D2f(x)− 4f(x) = 1 + e2x, 8) D2f(x) + 4f(x) = sin(4x)

9) Df(x)− 2f(x) = xe2x, 10) 2Df(x) + 3f(x) = x2 + 1

Les solutions des équations ci-dessus sont les fonctions suivantes

1) f(x) = C1 e
−2x + (C2 + x/3) ex +

(
x2 − 5x/2 + 21/8

)
e2x − 1/2, x ∈ R où C1 et C2 sont des

constantes arbitraires complexes.

2) f(x) = C1 e
− x2 + C2 e

x
2 − cos(2x)/34, x ∈ R où C1 et C2 sont des constantes arbitraires

complexes.

3) f(x) = C1 e
−ix + C2 e

ix + (x/5− 4/25) e2x, x ∈ R où C1 et C2 sont des constantes arbitraires
complexes.
Les solutions réelles sont données par

f(x) = C ′1 cos(x) + C ′2 sin(x) + (x/5− 4/25) e2x, x ∈ R

où C ′1 et C ′2 sont des constantes arbitraires réelles.

4) f(x) = (C1x + C2 + x2 − cos(x))e−x, x ∈ R où C1 et C2 sont des constantes arbitraires
complexes.

5) f(x) = c1 e
−x + c2 e

x − x2 − 3, x ∈ R où c1, c2 sont des constantes complexes arbitraires.

6) f(x) = c1 + c2e
x/9 − x, x ∈ R où c1, c2 sont des constantes complexes arbitraires.

7) f(x) = c1 e
−2x + (c2 + x/4) e2x − 1/4, x ∈ R où c1, c2 sont des constantes complexes arbitraires.

8) f(x) = c1 e
−2ix + c2 e

2ix − sin(4x)/12, x ∈ R où c1, c2 sont des constantes complexes arbitraires.

9) f(x) =
(
C + x2/2

)
e2x, x ∈ R où C est une constante complexe arbitraire.

10) f(x) = Ce−3x/2 + x2/3− 4x/9 + 17/27, x ∈ R où C est une constante complexe arbitraire.

3. Résoudre le système suivant, en spécifiant dans quel intervalle on travaille 4D2f(x) + f(x) = x2 + x+ 2
f(0) = 0
Df(0) = 2.

La solution du système est la fonction

f(x) = 6 cos
(x

2

)
+ 2 sin

(x
2

)
+ x2 + x− 6, x ∈ R.
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4. Résoudre l’équation différentielle suivante en précisant l’intervalle sur lequel on
travaille.

2D2f(x) +Df(x) = 2x

Déterminer ensuite la solution qui vaut 1 en 1 et dont la dérivée première vaut 0
en 1.

Les solutions de cette équation sont les fonctions

f(x) = C1 + C2 e
−x/2 + x2 − 4x, x ∈ R

où C1 et C2 sont des constantes arbitraires complexes.
La solution qui vaut 1 en 1 et dont la dérivée première vaut 0 en 1 est la fonction

f(x) = 8− 4 e(1−x)/2 + x2 − 4x, x ∈ R.
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Liste 6 : Equations différentielles (2) et Calcul
matriciel (1)

I. Equations différentielles : divers

1. Dans certaines conditions, la température de surface y(t) d’un objet change au cours
du temps selon un � taux � proportionnel à la différence entre la température de
l’objet et celle du milieu ambiant, que l’on suppose constante et que l’on note y0. On
obtient ainsi l’équation différentielle

Dy(t) = k(y(t)− y0)

où k est une constante strictement négative. Cette équation est appelée � Newton’s
law of cooling � et elle est utilisée notamment pour déterminer le temps entre la mort
d’un individu et la découverte de son corps.

Résoudre cette équation et montrer alors que la température de l’objet se rapproche
de la température ambiante au fur et à mesure que le temps passe.

Les solutions de cette équation sont les fonctions y(t) = C ekt + y0, t ∈ R où C est une constante
arbitraire réelle.
Comme k < 0, on a lim

t→+∞
y(t) = y0.

2. Depuis un recensement de la population d’un pays, on constate que la vitesse
d’accroissement de la population est, à tout instant, proportionnelle au nombre
d’habitants à cet instant. Après combien de temps depuis ce recensement, cette
population sera-t-elle triple sachant qu’elle a doublé en 50 ans ?

La population aura triplé depuis le recencement après
50 ln(3)

ln(2)
≈ 79, 248 ans donc environ 79 ans.

3. La vitesse initiale d’une balle roulant sur un sol horizontal est de 10 m/s. Vu les
frottements, la vitesse décrôıt avec un taux constant de 2 m/s2. Quand la balle sera
arrêtée, quelle distance aura-t-elle parcourue depuis son point de départ ?

Quand la balle sera arrêtée, elle aura parcouru une distance de 25 m.

4. Déterminer la valeur de la constante c de telle sorte que la fonction f(x) = 3x2, x ∈ R
soit une solution de l’équation différentielle

c

(
dy

dx

)2

+ x
dy

dx
− y = 0

La constante vaut −1/12.

5. Soit L la longueur d’un pendule et soit T sa période d’oscillation. Si les oscillations
sont petites et si le pendule n’est soumis à aucune force autre que la gravité, alors un
modèle liant T et L est l’équation différentielle

dT

dL
=

T

2L
.

Montrer que cela implique que la période T est proportionnelle à la racine carrée de
la longueur L.

Les solutions de cette équation sont les fonctions T (L) = C
√
L, L ∈]0,+∞[ où C est une

constante arbitraire strictement positive.
La période T est donc bien proportionnelle à la racine carrée de la longueur L.
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II. Opérations entre matrices

1. Soient les matrices A, B, C données par

Ã =

 2 i
1 + i −1
3/i (2− i)2

 , B =

 2 0
1 4
i −2

 , C =

(
3 1/(i+ 1)
−2i i/2

)
.

Si possible, effectuer les opérations suivantes (et simplifier la réponse au maximum).
Si cela ne l’est pas, en expliquer la raison.

1) A+B, 2) A+ B̃, 3) AB, 4) AB + C, 5) BA, 6) CÃ, 7) A∗C, 8) iC, 9) (iA)∗.

1) A+B est impossible à calculer car les matrices n’ont pas le même format.

2) A+ B̃ =

(
4 2 + i −2i
i 3 1− 4i

)
3) AB =

(
8 + i 4 + 10i
3 + 5i −10 + 8i

)

4)AB+C =

(
11 + i (9 + 19i)/2

3 + 3i (−20 + 17i)/2

)
5)BA =

 4 2 + 2i −6i
2 + 4i −3 + i 12− 19i

0 1 + i −3 + 8i


6) CÃ est impossible à calculer car le nombre de colonnes (2) de C n’est pas égal au nombre de

lignes (3) de Ã.

7) A∗C =

 4 3/2− i
3− i −3i/2

8 + 3i (−1 + 6i)/2

 8) iC =

(
3i (1 + i)/2

2 −1/2

)

9) (iA)∗ =

 −2i −1
−1− i i

3 4− 3i



2. Soit A une matrice carrée de dimension 3 telle que Aij = 1, ∀i, j et B =

 1 0 0
0 1 0
0 0 0

 .

Calculer C = AB −BA et en déduire la forme de C̃ + C.

On a C =

 0 0 −1
0 0 −1
1 1 0

 et C̃ + C est la matrice nulle de dimension 3.

3. Montrer que A2 − 2A+ 3 1 = 0 avec

A =

(
2 −1
3 0

)
.

4. Déterminer la forme générale des matrices qui commutent avec la matrice

A =

(
0 1
2 0

)
.

La forme générale des matrices qui commutent avec A est du type

(
a b
2b a

)
(a, b ∈ C).
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Liste 7 : Calcul matriciel (2)

I. Déterminants

1. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

A =
1

3

(
2− i 3i
−1 4

)
, B =

(
1 −2i

(i+ 1)2 5

)
, C =

 −3 1 6
6 2 3
3 1 −6

 D =
1

2

 1 3 −3
3 −3 1
−3 1 3


Le déterminant de A vaut (8− i)/9, celui de B vaut 1, celui de C vaut 90 et celui de D vaut −7/2.

2. Le déterminant de chacune des matrices suivantes est un polynôme en x ∈ C.
Factoriser ce polynôme en un produit de facteurs du premier degré.

A =

(
1− x

√
3√

3 2− x

)
, B =

(
i x+ 2
−x −i

)
, C =

(
x −4
1 x

)
. D =

 x 0 3
0 x+ 1 x
1 0 x− 2

 .

Le déterminant de A est égal à

(
x− 3 +

√
13

2

)(
x− 3−

√
13

2

)
; celui de B est égal à (x + 1)2,

celui de C vaut (x+ 2i)(x− 2i) et celui de D (x+ 1)2(x− 3).

II. Inversion de matrices

Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne
α ∈ R).

A =

(
0 1
−1 −2

)
, B =

(
2 8
1 4

)
, C =

(
sin(α) cos(α)
cos(α) − sin(α)

)
, D =

 −1 0 −1
0 −1 1
i 1 0

 .

• L’inverse de A est

(
−2 −1
1 0

)
.

• La matrice B ne possède pas d’inverse car son déterminant est nul.

• La matrice C est égale à son inverse.

• L’inverse de D est 1+i
2

 −1 −1 −1
i i 1
i 1 1

 .

III. Valeurs et vecteurs propres, diagonalisation

1. Déterminer les valeurs propres des matrices suivantes et en donner la multiplicité.

A =

(
i −i
i i

)
, B =

 2 1 10
0 3 5
0 0 2

 , C =

 1 3 0
3 −2 −1
0 −1 1

 .

Les valeurs propres de la matrice A sont −1 + i et 1 + i ; ces valeurs propres sont simples (de
multiplicité 1).
Les valeurs propres de la matrice B sont 2 (valeur propre double) et 3 (valeur propre simple).
Les valeurs propres de la matrice C sont −4, 1 et 3 ; ces valeurs propres sont simples.
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2. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces
matrices sont-elles diagonalisables ? Pourquoi ? Si elles le sont, en déterminer une
forme diagonale ∆, ainsi qu’une matrice inversible S qui y conduit.

A =

(
2 3
4 1

)
, B =

 −1 0 0
1 1 0
−2 0 −1

 , C =

 −1 0 0
1 1 0
0 0 −1

 .

Calculer les produits AS et S∆. Comparer les matrices obtenues. N’aurait-on pas pu
prévoir ce resultat sans effectuer les calculs ? Pourquoi ?

• Matrice A : 2 valeurs propres simples : −2 et 5 ; la matrice est donc diagonalisable.

Les vecteurs propres relatifs à la valeur propre −2 sont du type c

(
3
−4

)
, c ∈ C0 et ceux relatifs

à la valeur propre 5 sont du type c′
(

1
1

)
, c′ ∈ C0.

On a, par exemple, ∆ = S−1AS =

(
−2 0
0 5

)
avec S =

(
3 1
−4 1

)
si on note A la matrice

donnée.

Dès lors, en effectuant les produits, on a AS =

(
−6 5
8 5

)
= S∆. Comme A est diagonalisable,

on a ∆ = S−1AS ⇔ S∆ = AS en multipliant les deux membres à gauche par S.

• Matrice B : 2 valeurs propres, l’une simple 1 et l’autre double −1.

Les vecteurs propres relatifs à la valeur propre double −1 sont du type c

 0
0
1

 , c ∈ C0. Comme

cette valeur propre n’engendre pas 2 vecteurs non multiples l’un de l’autre, la matrice n’est pas
diagonalisable.

Les vecteurs propres relatifs à la valeur propre simple 1 sont du type c′

 0
1
0

 , c′ ∈ C0.

• Matrice C : 2 valeurs propres, l’une simple 1 et l’autre double −1.

Les vecteurs propres relatifs à la valeur propre double −1 sont du type c1

 −2
1
0

+ c2

 0
0
1

 ,

c1, c2 ∈ C non simultanément nuls. Cette matrice est donc diagonalisable car les vecteurs

 −2
1
0


et

 0
0
1

 ne sont pas multiples l’un de l’autre.

Les vecteurs propres relatifs à la valeur propre simple 1 sont du type c

 0
1
0

 , c ∈ C0.

On a, par exemple, S−1CS =

 −1 0 0
0 −1 0
0 0 1

 avec S =

 −2 0 0
1 0 1
0 1 0

 si on note C la matrice

donnée.
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3. Une matrice carrée A de dimension 2 possède les deux valeurs propres 1 et -1, aux-
quelles peuvent être associés respectivement les vecteurs propres(

2
2

)
et

(
1
−1

)
.

Que vaut A ?

La matrice A est égale à

(
0 1
1 0

)
.
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Liste 8 : Calcul matriciel (3)

I. Matrices de Leslie et matrices stochastiques

1. Les baleines bleues sont une espèce de mammifères en voie d’extinction à cause
notamment de non respect de règles de pêche. Tous les 20 ans, des chercheurs
recensent leur population (une estimation bien sûr) et font la répartition entre le
nombre de baleines femelles de moins de 20 ans (les � jeunes �) et celui des baleines
femelles de strictement plus de 20 ans (les � vieilles �). Ils ont trouvé le moyen de
marquer les deux catégories de telle sorte que l’on puisse reconnâıtre les jeunes nés
d’une mère de moins de 20 ans et ceux nés d’une mère de plus de 20 ans. Le comp-
tage des baleines femelles actuellement donne les résultats suivants : 1/3 des baleines
femelles � jeunes � ont donné naissance à un petit (survivant) et 5/8 des baleines
� vieilles � l’ont fait. De plus, seulement 1/6 des baleines � jeunes � et seulement la
moitié des baleines � vieilles � ont survécu.
On suppose que les paramètres sont valables à grande échelle de temps. . .
(a) Ecrire le système d’équations modélisant l’évolution des deux catégories de
baleines, en spécifiant la matrice de Leslie correspondante.
(b) Comment va évoluer la population ?
(c) Pourquoi peut-on dire que l’espèce est en voie d’extinction ?

(a) Soient x(n) le nombre de baleines femelles � jeunes � et y(n) celui des baleines femelles
� vieilles � lors du comptage numéro n. On a le système :(

x(n+ 1)
y(n+ 1)

)
=

(
1/3 5/8
1/6 1/2

)(
x(n)
y(n)

)
.

La matrice de Leslie

L =

(
1/3 5/8
1/6 1/2

)
.

est régulière.

(b) Les valeurs propres de L sont 3/4 et 1/12 et les vecteurs propres de valeur propre 3/4 sont

c

(
3
2

)
avec c ∈ C0.

Vu le théorème de Perron-Frobenius, le nombre de baleines de chaque catégorie, de même que le
total évolue selon

lim
n→+∞

x(n+ 1)

x(n)
= 3/4 lim

n→+∞

y(n+ 1)

y(n)
= 3/4 lim

n→+∞

x(n+ 1) + y(n+ 1)

x(n) + y(n)
= 1.

La répartition de la population selon les deux catégories évolue vers la répartition 3/5, 2/5.

(c) Comme 3/4 < 1, la population est donc en voie d’extinction.

2. L’institut météorologique a fait les observations suivantes :
— on n’a jamais vu deux jours ensoleillés consécutifs,
— s’il fait beau un jour donné, on a une chance égale d’avoir de la pluie ou de la neige

le lendemain,
— s’il pleut ou s’il neige, on a une chance sur deux que le temps se maintienne le jour

suivant et une chance sur quatre qu’il fasse beau le lendemain.
Sachant cela,

(a) Représenter la matrice de transition de ce système.
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(b) Sachant qu’il fait beau aujourd’hui, quel pourcentage de chance a-t-on qu’il fasse
beau dans deux jours ?

(c) A long terme, quelle sera l’évolution du climat ?

(a) Si on note N0, P0 et S0 respectivement un jour de neige, un jour de pluie et un jour de soleil
au départ et N1, P1 et S1 la météo correspondante le jour suivant, on a N1

P1

S1

 =

 1/2 1/4 1/2

1/4 1/2 1/2

1/4 1/4 0


 N0

P0

S0


et la matrice de dimension 3 est la matrice de transition du système.
(b) Sachant qu’il fait beau aujourd’hui, on a 25 % de chance qu’il fasse beau dans 2 jours.

(c) Le vecteur de probabilité de valeur propre 1 est égal à

 0, 4
0, 4
0, 2

. A long terme, on 4 chances

sur 10 qu’il neige ou qu’il pleuve et 2 chances sur 10 qu’il fasse ensoleillé.

3. Dans un laboratoire, à chaque repas, des lapins ont le choix entre manger des carottes,
de la salade ou des pissenlits mais ne peuvent manger qu’un aliment d’une seule
catégorie lors d’un même repas. Comme ils sont gourmands, ils ne manquent jamais
un repas.
L’observation montre que si un lapin a mangé des carottes à un repas, il en mangera
au repas suivant dans 70 % des cas ; sinon, il mangera de la salade une fois sur 5 ou
des pissenlits 1 fois sur 10.
S’il a mangé de la salade, il en mangera encore 6 fois sur 10 au repas suivant ; sinon,
il mangera un des deux autres aliments de façon équiprobable.
Enfin, s’il a mangé des pissenlits, au repas suivant il y a 1 chance sur 5 qu’il mange
des carottes et 2 chances sur 5 de la salade.

(a) Si un lapin vient de manger des carottes, quelle est la probabilité qu’il mange de
la salade dans deux repas ?

(b) A longue échéance, que mange ce lapin ?

(a) La probabilité pour que le lapin mange de la salade dans 2 repas vaut 0, 3.
(b) A longue échéance, le lapin mange des carottes ou de la salade avec une probabilité de 2/5,
des pissenlits avec une probabilité de 1/5.

4. Un individu vit dans un milieu où il est susceptible d’attrapper une maladie par
piqûre d’insecte. Il peut être dans l’un des trois états suivants : immunisé (I), malade
(M), non malade et non immunisé (S). D’un mois à l’autre, son état peut changer
selon les règles suivantes :

- étant immunisé, il peut le rester avec une probabilité 0, 9 ou passer à l’état S avec
une probabilité 0, 1 ;

- étant dans l’état S, il peut le rester avec une probabilité 0, 5 ou passer à l’état M
avec une probabilité 0, 1 ;

- étant malade, il peut le rester avec une probabilité 0, 2 ou passer à l’état S avec
une probabilité 0, 8.

Déterminer
a) la matrice de transition du système ;
b) la probabilité qu’un individu immunisé soit encore immunisé après deux mois ;
c) la probabilité qu’à long terme, un individu soit immunisé.

(a) Notons respectivement I0,M0 et S0 les probabilités qu’un individu soit immunisé, malade,
non malade et non immunisé un jour donné. Le mois suivant, ces probabilités sont respectivement
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données par I1 = 0, 9 I0 + 0, 4S0 + 0M0

S1 = 0, 1 I0 + 0, 5S0 + 0, 8M0

M1 = 0 I0 + 0, 1S0 + 0, 2M0

⇔

 I1
S1

M1

 =

 0, 9 0, 4 0
0, 1 0, 5 0, 8
0 0, 1 0, 2


︸ ︷︷ ︸

:=T

 I0
S0

M0

.

Donc, la matrice de transition du système est donnée par la matrice T .

(b) Si un individu est immunisé un jour donné, la probabilité qu’il soit immunisé deux mois plus
tard est de 85%.

(c) A long terme, la probabilité qu’un individu soit immunisé est donnée par 32
41 , c’est-à-dire envi-

ron 78%.

5. Un biologiste étudie le passage d’une molécule de phosphore dans un écosystème.
Celle-ci peut se trouver dans le sol, dans l’herbe, dans le bétail ou peut disparâıtre de
l’écosystème. D’une heure à l’autre, le transfert peut s’effectuer selon les modalités
suivantes :

- étant dans le sol, la molécule a 3 chances sur 5 d’y rester, 3 chances sur 10 de passer
dans l’herbe et 1 chance sur 10 de disparâıtre ;

- étant dans l’herbe, elle a 1 chance sur 10 de revenir dans le sol, 2 chances sur 5 de
rester dans l’herbe et 1 chance sur 2 de se retrouver dans le bétail ;

- étant dans le bétail, elle a 3 chances sur 4 de retourner dans le sol, 1 chance sur 5
de rester dans le bétail et 1 chance sur 20 de disparâıtre ;

- si la molécule disparâıt, elle ne réapparâıt plus nulle part.
Déterminer la matrice de transition du système.

Notons respectivement S0, H0, B0 et D0 les probabilités qu’une molécule de phosphore se trouve
dans le sol, dans l’herbe, dans le bétail et disparaisse à une heure donnée. L’heure suivante, ces
probabilités sont respectivement données par

S1 = 3S0/5 +H0/10 + 3B0/4 + 0D0

H1 = 3S0/10 + 2H0/5 + 0B0 + 0D0

B1 = 0S0 +H0/2 +B0/5 + 0D0

D1 = S0/10 + 0H0 +B0/20 + 1D0

⇔


S1

H1

B1

D1

 =


3/5 1/10 3/4 0

3/10 2/5 0 0

0 1/2 1/5 0

1/10 0 1/20 1


︸ ︷︷ ︸

:=T


S0

H0

B0

D0

.

Donc, la matrice de transition du système est donnée par la matrice T .

6. Depuis des mois, un laborantin de l’ile de Rêve travaille sur une substance, appelée
KillCovid, très prometteuse pour la découverte d’un médicament qui permettrait de
détruire le virus responsable de la maladie Covid. Le KillCovid n’a malheureusement
qu’une durée de vie de deux mois.
Le laborantin a trouvé le moyen de se servir de ce KillCovid comme catalyseur pour
en produire du nouveau, à partir d’autres substances communes tenues secrètes. Il
récupère donc le KillCovid utilisé à la fin du processus. Chaque mois, en utilisant 1
dose de KillCovid d’un mois, il produit 1/2 dose de nouveau KillCovid et la propor-
tion est la même avec le KillCovid de deux mois.
(a) Ecrire le système d’équations modélisant l’évolution du stock de KillCovid (stock
âgé d’un mois et stock âgé de deux mois), en spécifiant la matrice de Leslie corres-
pondante.
(b) Comment va évoluer le stock de KillCovid ?
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(a) Soient x(n) le nombre de doses de KillCovid d’un mois et y(n) celui de deux mois au mois
numéro n. On a le système :(

x(n+ 1)
y(n+ 1)

)
=

(
1/2 1/2
1 0

)(
x(n)
y(n)

)
.

La matrice de Leslie

L =

(
1/2 1/2
1 0

)
est régulière (les éléments de L2 sont strictement positifs).
(b) Les valeurs propres de L sont 1 et −1/2 et les vecteurs propres de valeur propre 1 sont

c

(
1
1

)
avec c ∈ C0.
Vu le théorème de Perron-Frobenius, le nombre de doses a tendance à se stabiliser de même que
le total car

lim
n→+∞

x(n+ 1)

x(n)
= 1 lim

n→+∞

y(n+ 1)

y(n)
= 1 lim

n→+∞

x(n+ 1) + y(n+ 1)

x(n) + y(n)
= 1.

7. Par cycle de trois ans, un gestionnaire financier s’occupe du portefeuille d’actions
d’une entreprise. Ce portefeuille comprend des actions qui viennent d’être achetées,
d’autres qui ont été achetées un an auparavant et enfin d’autres qui sont dans le
portefeuille depuis deux ans.
Le prix de chaque action venant d’être achetée augmente tellement qu’au début de
la deuxième année on peut en acheter 6 nouvelles et au début de la troisième 10
nouvelles.
En même temps, au cours de la première année, il revend la moitié de ses actions
pour investir dans l’entreprise et, au cours de la deuxième année, il ne conserve que
40 % des actions possédées à ce moment et revend les autres pour la même raison.
(a) Ecrire le système d’équations modélisant l’évolution de cette répartition des
actions selon leur durée de placement (un an, deux ans, trois ans) en indiquant quelle
est la matrice de Leslie de celle-ci.
(b) Comment va évoluer la composition du portefeuille ?
(c) Quelle est la répartition idéale qui permet de doubler chaque nombre d’actions
de chaque type sur un an ?

(a) On désigne par x1, x2, x3 le nombre d’actions placées respectivement depuis un an, deux ans,
trois ans. L’année suivante, la répartition des actions sera de 6x2 + 10x3 actions placées depuis
un an, x1/2 actions placées depuis deux ans et 2x2/5 actions placées depuis trois ans. Si on note
x1(n), x2(n), x3(n) la répartition l’année n, cela donne le système x1(n+ 1)

x2(n+ 1)
x3(n+ 1)

 =

 0 6 10
1/2 0 0
0 2/5 0

  x1(n)
x2(n)
x3(n)

 .

La matrice de Leslie

L =

 0 6 10
1/2 0 0
0 2/5 0


est régulière (les éléments de L5 sont strictement positifs).
(b) Les valeurs propres de L sont 2 et −1 et les vecteurs propres de valeur propre 2 sont

c

 20
5
1


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avec c ∈ C0.
Vu le théorème de Perron-Frobenius, le nombre d’actions de chaque type a tendance à doubler
chaque année, de même que le total de toutes celles-ci car

lim
n→+∞

xk(n+ 1)

xk(n)
= 2 ∀k = 1, 2, 3, lim

n→+∞

x1(n+ 1) + x2(n+ 1) + x3(n+ 1)

x1(n) + x2(n) + x3(n)
= 2

(c) Les proportions de chaque type d’action dans le portefeuille se rapprochent de 20/26, 5/26, 1/26.

II. Divers

1. En algèbre linéaire (ou géométrie analytique), une rotation du plan (d’angle θ) est
représentée par une matrice du type

Mθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
où θ est un réel (et représente la mesure de l’angle de la rotation).
— Pour tout θ, déterminer la matrice produit M2

θ et en simplifier les éléments au
maximum.
On a

M2
θ =

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
— Montrer que quels que soient θ, θ′, les matrices Mθ et Mθ′ commutent. Qu’est-ce

que cela signifie en termes de rotations ?
On a

MθMθ′ = Mθ′Mθ =

(
cos(θ + θ′) − sin(θ + θ′)
sin(θ + θ′) cos(θ + θ′)

)
ce qui signifie que l’ordre dans lequel on effectue les rotations n’a pas d’importance.

— Montrer que quel que soit le réel θ, la matrice(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
est aussi une matrice qui représente une rotation.

On a (
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
=

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
.

C’est donc aussi une matrice de rotation mais la rotation s’effectue dans le sens inverse de la
rotation d’angle θ.

2. Vrai ou faux (Justifier)

(a) Toute matrice carrée de dimension 3 commute avec

 1 0 0
0 1 0
0 0 0

.

Faux : si on multiplie la matrice donnée notée A à gauche et à droite par une matrice quel-

conque notée B, par exemple

 0 0 0
0 0 0
3 0 0

, on a notamment que la troisième ligne de AB est

le vecteur nul alors que la troisième ligne de BA a pour premier élément 3.

(b) La matrice (
a− b a2 − ab+ b2

a2 − b2 a3 − b3
)

(a, b ∈ C)
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est toujours inversible.
Faux car le déterminant de cette matrice vaut 0 si a = b ou si b = 0.

(c) Si une matrice carrée A de dimension 2 est de déterminant nul, alors l’une des
colonnes de A est multiple de l’autre.
Vrai (cf. théorie).

(d) Si deux lignes d’une matrice carrée A de dimension 3 sont identiques, alors
detA = 0.
Vrai (cf. théorie).

(e) Si A est une matrice carrée de dimension 3, alors det(5A) = 5 det(A).
Faux : det(5A) = 53 det(A) = 125 det(A).

(f) Si B est la matrice obtenue en multipliant la ligne 3 d’une matrice carrée A de
dimension 3 par 5, alors det(B) = 5 det(A).
Vrai (cf. théorie).

(g) Si X est un vecteur propre de la matrice 2A alors c’est aussi un vecteur propre de
A.
Vrai car si X 6= 0 est tel que 2AX = λX alors on a AX = (λ/2)X.

(h) Si λ est une valeur propre de A alors λ2 est valeur propre de A2.
Vrai car si X 6= 0 est tel que AX = λX alors on a A2X = A(AX) = A(λX) = λ(AX) = λ2X.

(i) 0 peut être valeur propre d’une matrice inversible.
Faux car comme A est inversible, on a det(A) 6= 0. Si λ = 0 alors det(A−λX) = 0⇔ det(A) = 0
ce qui est absurde puisque det(A) 6= 0.
Autre justification possible : si X 6= 0 est tel que AX = 0X = 0 et que A−1 existe alors
A−1 AX = A−1 0⇔ X = 0 ce qui est absurde puisque X 6= 0.

(j) Si A est inversible, tout vecteur propre de A est aussi vecteur propre de son inverse.
Vrai car si le vecteur X non nul est tel que AX = λX et si A−1 existe alors on a A−1(AX) =
λA−1X ⇔ X = λA−1X. Comme A est inversible, son déterminant n’est pas nul. Or det(A)
est la valeur en 0 du polynôme caractéristique det(A− λ1). Donc 0 n’est pas valeur propre de
A c’est-à-dire λ 6= 0 et on a X = λA−1X ⇔ A−1X = (1/λ)X.

(k) Le carré d’une matrice est une matrice qui possède au moins un élément non nul.
Faux car le carré de la matrice nulle est la matrice nulle.

(l) Si A est diagonalisable, alors sa transposée l’est aussi.
Vrai car si S est inversible tel que S−1AS = ∆ (∆ matrice diagonale) alors les transposées des

deux membres sont des matrices égales et on a S̃ Ã S̃−1 = ∆̃ = ∆⇔ (S̃−1)−1 Ã S̃−1 = ∆

⇔ T−1 Ã T = ∆ si on pose T = S̃−1.

(m) Si A est diagonalisable et inversible, alors l’inverse est aussi diagonalisable.
Vrai car si A−1 existe et si S inversible est tel que S−1AS = ∆ (∆ matrice diagonale), comme
det(S−1AS) = det(A) 6= 0 (A est inversible) et det(A) = det(∆) alors ∆ est inversible et on a
(S−1AS)−1 = ∆−1 ⇔ S−1 A−1 (S−1)−1 = ∆−1 ⇔ S−1 A−1 S = ∆−1. Ainsi l’inverse d’une
matrice diagonale est une matrice diagonale.

(n) Si A est diagonalisable, alors A2 l’est aussi.
Vrai car si S est inversible tel que S−1AS = ∆ (∆ matrice diagonale) alors (S−1AS)(S−1AS) =
∆2 et vu l’associativité du produit matriciel, on a S−1(AS S−1A)S = S−1A2S = ∆2 et le carré
d’une matrice diagonale est un matrice diagonale.

(o) Les valeurs propres de l’inverse d’une matrice inversible sont les inverses des va-
leurs propres de la matrice.
Vrai. De fait, pour tout vecteur X 6= 0 on a

AX = λX ⇔ A−1AX = λA−1X ⇔ X = λA−1X ⇔ A−1X = (1/λ)X
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car A étant inversible, ses valeurs propres sont non nulles (voir (j) ci-dessus).
Autre justification possible : considérons le polynôme caractéristique. On a

det(A− λ1) = det(A− λAA−1) = det(A(1− λA−1)) = det(A) det(1− λA−1)

puisqu’on travaille avec des matrices carrées de même dimension.
Dès lors, si A est une matrice carrée de dimension n, on a

det(A− λ1) = det(A) det

(
λ

(
1

λ
1−A−1

))
= det(A) λn det

(
1

λ
1−A−1

)
.

Il s’ensuit que si λ annule le polynôme caractéristique de A alors 1/λ annule celui de A−1 ; et
réciproquement, si µ = 1/λ annule le polynôme caractéristique de A−1 alors λ annule celui de
A.

(p) La somme de deux matrices diagonalisables est toujours une matrice diagonali-
sable.
Faux car on a, par exemple,(

1 1
0 2

)
+

(
0 0
0 −1

)
=

(
1 1
0 1

)
,

les deux matrices du membre de gauche étant diagonalisables mais non celle du membre de
droite.

3. La cryptographie, pour beaucoup de monde, est un moyen de maintenir des commu-
nications privées. En effet, la protection des communications sensibles a été l’objectif
principal de la cryptographie dans la grande partie de son histoire. Le chiffrage est la
transformation des données dans une forme illisible. Son but est d’assurer la sécurité
en maintenant l’information cachée aux gens à qui l’information n’est pas adressée,
même ceux qui peuvent voir les données chiffrées. Le déchiffrage est l’inverse du chif-
frage ; c’est la transformation des données chiffrées dans une forme intelligible.
Aujourd’hui, les gouvernements emploient des méthodes sophistiquées de codage et de
décodage des messages. Un type de code, qui est extrêmement difficile à déchiffrer,
se sert d’une grande matrice pour coder un message. Le récepteur du message le
décode en employant l’inverse de la matrice. Voici un exemple de codage/décodage
d’un message par ce procédé.
Considérons le message

SUIS EN DANGER

ainsi que la matrice de codage (
1 −2
−1 3

)
= C.

Pour le codage, on assigne à chaque lettre de l’alphabet un nombre, à savoir simple-
ment sa position dans l’alphabet, c’est-à-dire A correspond à 1, B correspond à 2, . . . ,
Z correspond à 26. En outre, on assigne le nombre 27 à un espace. Ainsi, le message
devient :

S U I S * E N * D A N G E R
19 21 9 19 27 5 14 27 4 1 14 7 5 18.

Puisqu’on emploie une matrice 2×2, on décompose la forme numérique de ce message
en une suite de vecteurs 2 1× 2 :

(19 21), (9 19), (27 5), (14 27), (4 1), (14 7), (5 18).

2. Dans le cas où il faut compléter le dernier vecteur, il suffit d’y placer des � 27�, ce qui revient à compléter le message
par des espaces pour avoir un nombre de caractères qui soit multiple de la dimension de la matrice de codage.
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On code alors le message en multipliant chacun de ces vecteurs par la matrice de
codage C, ce qui peut être fait en définissant une matrice dont les lignes sont ces
vecteurs et en multipliant cette dernière par C, ce qui nous donne :

19 21
9 19
27 5
14 27
4 1
14 7
5 18


(

1 −2
−1 3

)
=



−2 25
−10 39
22 −39
−13 53

3 −5
7 −7
−13 44


.

Dès lors, le message crypté est donné par les lignes de cette dernière matrice que l’on
place bout à bout pour la transmission :

−2, 25, −10, 39, 22, −39, −13, 53, 3, −5, 7, −7, −13, 44.

Enfin, pour décoder le message, le récepteur a recours à la même technique que celle
employée pour le codage mais en utilisant l’inverse de la matrice de codage, qui est
donnée ici par

C−1 =

(
3 2
1 1

)
.

Il doit donc calculer le produit

−2 25
−10 39
22 −39
−13 53

3 −5
7 −7
−13 44


(

3 2
1 1

)
=



19 21
9 19
27 5
14 27
4 1
14 7
5 18


et il retrouve bien la matrice correspondant au message de départ, ce qui lui permet
de lire le message :

19 21 9 19 27 5 14 27 4 1 14 7 5 18
S U I S * E N * D A N G E R.

Le Gouvernement a réussi à intercepter le message crypté suivant, provenant de
l’ennemi public n◦1 et destiné à l’ennemi public n◦2 :

−18, −21, −31, 53, 48, 61, 3, −15, −21, −34, −30, −43, 45, 42, 48.

L’un de ses meilleurs espions infiltrés, James Bond, a découvert que la matrice utilisée
par l’ennemi pour coder ce message est la suivante : −3 −3 −4

0 1 1
4 3 4

 .

Malheureusement, il n’y connâıt rien en calcul matriciel et personne ne peut déchiffrer
ce message... Votre mission est de décoder ce message dans les plus brefs délais.

Solution. La matrice de décodage est donnée par l’inverse de la matrice de codage, c’est-à-dire la
matrice  1 0 1

4 4 3
−4 −3 −3

 .

Le message est le suivant :

22 9 12 1 9 14 27 3 21 18 9 5 21 24 27
V I L A I N * C U R I E U X *.
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